Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HS3 Mission Identifies Area of Strong Winds, Rain in Hurricane Ingrid

27.09.2013
One of the instruments that flew aboard one of two unmanned Global Hawk aircraft during NASA's HS3 mission was the Hurricane Imaging Radiometer known as HIRAD.

HIRAD identified an area of heavy rains and and likely strong winds in Hurricane Ingrid by measuring surface wind speeds and rain rates using its rectangular antenna to track activity on the ocean’s surface.


Data from the real-time HIRAD data stream from the Hurricane Ingrid flight on Sept. 15. The greenish-blue and yellow area near Mexico suggests rain and strong winds in Hurricane Ingrid. The dark red across north Florida is because land appears much warmer than ocean at microwave frequencies.
Image Credit: NASA

NASA's Global Hawk 871 is the over-storm Global Hawk that carried HIRAD on a flight over Hurricane Ingrid on Sept. 15 as the storm moved through the extreme southwestern Gulf of Mexico and traveled west-northwestward along Mexico's east coast.

Along with HIRAD, Global Hawk 871 also carried the High-altitude Imaging Wind and Rain Airborne Profiler or HIWRAP, the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer or HAMSR and the Airborne Detector for Energetic Lightning Emission or ADELE instrument.

Late on Sept. 14, Ingrid had strengthened into a hurricane. At 11 a.m. EDT on Sept. 15 the center of Hurricane Ingrid was located near latitude 22.56 north and longitude 95.8 west, about 135 miles/220 km east of Tampico, Mexico. Ingrid was moving toward the west-northwest at 6 mph/ 11 kph. Maximum sustained winds were near 75 mph/ 120 kph.

On Sept. 15, the HIRAD instrument scanned Hurricane Ingrid from its perch on NASA Global Hawk 871. "HIRAD data definitely saw most of the strong wind and heavy rain on the northern and eastern sides of Hurricane Ingrid in the area generally near 23 degrees north latitude and 95 degrees west longitude," said Daniel J. Cecil, the Principal Investigator for the HIRAD instrument at NASA's Marshall Space Flight Center in Huntsville, Ala.

HIRAD data provides "brightness temperature data" that is color-coded by Cecil and his team to indicate areas of falling rain and possible moderate-to-strong surface winds.

The antenna on HIRAD makes measurements of microwaves emitted by the ocean surface that are increased by the storm. As winds move across the surface of the sea they generate white, frothy foam. This sea foam causes the ocean surface to emit increasingly large amounts of microwave radiation, similar in frequency or wavelength, but much lower intensity, to that generated within a typical home microwave oven. HIRAD measures that microwave energy and, in doing so, allows scientists to deduce how powerfully the wind is blowing. With HIRAD’s unique capabilities, the two-dimensional structure of the surface wind field can be much more accurately determined than current operational capabilities allow. HIRAD was developed at the Marshall Space Flight Center, Huntsville, Ala.

TRMM image of Ingrid
NASA's Tropical Rainfall Measuring Mission or TRMM satellite measured rainfall in Hurricane Ingrid on Sept. 15 at 10:27 p.m. EDT and found some heavy rainfall (red) around its center. Mexican states are labeled on this image.
Image Credit: SSAI/NASA
Image Token:
Later that night, NASA's Tropical Rainfall Measuring Mission or TRMM satellite passed over Hurricane Ingrid at 10:27 p.m. EDT and confirmed some heavy rainfall north and east of its center. In those areas, rain was falling at a rate of 2 inches/50 mm per hour. Hurricane Ingrid made landfall in La Pesca located in northeastern Mexico on Monday, Sept. 16.

There is a difference between the HIRAD and TRMM data. "HIRAD uses lower frequencies than TRMM, and measures surface wind speed in addition to rain rate," said Cecil. HIRAD gives a higher resolution rain mapping. "By being on an airplane, HIRAD can fly across a storm several times with the exact track being chosen; a satellite like TRMM will only cross the storm occasionally and its track cannot be adjusted."

There are a couple of other differences between TRMM and HIRAD data. TRMM covers a much larger viewing area than HIRAD and TRMM provides information about vertical cross-sections of storms in addition to horizontal maps. TRMM has been observing storms since 1997 from its orbit around the Earth and HIRAD gathers data from an airplane within ~24 hour long flights.

For more information about the storm history and how NASA satellites captured it, visit Ingrid's story history on the NASA Hurricane page: http://www.nasa.gov/content/goddard/ingrid-atlanticgulf-of-mexico/

For more information about NASA's HS3 Mission, visit: www.nasa.gov/HS3

Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/hs3-mission-identifies-area-of-strong-winds-rain-in-hurricane-ingrid/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>