Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Stuff: Magma at Shallow Depth Under Hawaii

15.12.2010
Ohio State University researchers have found a new way to gauge the depth of the magma chamber that forms the Hawaiian Island volcanic chain, and determined that the magma lies much closer to the surface than previously thought.

The finding could help scientists predict when Hawaiian volcanoes are going to erupt. It also suggests that Hawaii holds great potential for thermal energy.

Julie Ditkof, an honors undergraduate student in earth sciences at Ohio State, described the study at the American Geophysical Union Meeting in San Francisco on Tuesday, December 14.

For her honors thesis, Ditkof took a technique that her advisor Michael Barton, professor of earth sciences, developed to study magma in Iceland, and applied it to Hawaii.

She discovered that magma lies an average of 3 to 4 kilometers (about 1.9 to 2.5 miles) beneath the surface of Hawaii.

“Hawaii was already unique among volcanic systems, because it has such an extensive plumbing system, and the magma that erupts has a unique and variable chemical composition,” Ditkof explained. “Now we know the chamber is at a shallow depth not seen anywhere else in the world.”

For example, Barton determined that magma chambers beneath Iceland lie at an average depth of 20 kilometers.

While that means the crust beneath Hawaii is much thinner than the crust beneath Iceland, Hawaiians have nothing to fear.

“The crust in Hawaii has been solidifying from eruptions for more than 300,000 years now. The crust doesn’t get consumed by the magma chamber. It floats on top,” Ditkof explained.

The results could help settle two scientific debates, however.

Researchers have wondered whether more than one magma chamber was responsible for the varying chemical compositions, even though seismological studies indicated only one chamber was present.

Meanwhile, those same seismological studies pegged the depth as shallow, while petrologic studies – studies of rock composition – pegged it deeper.

There has never been a way to prove who was right, until now.

“We suspected that the depth was actually shallow, but we wanted to confirm or deny all those other studies with hard data,” Barton said.

He and Ditkof determined that there is one large magma chamber just beneath the entire island chain that feeds the Hawaiian volcanoes through many different conduits.

They came to this conclusion after Ditkof analyzed the chemical composition of nearly 1,000 magma samples. From the ratio of some elements to others – aluminum to calcium, for example, or calcium to magnesium – she was able to calculate the pressure at which the magma had crystallized.

For his studies of Iceland, Barton created a methodology for converting those pressure calculations to depth. When Ditkof applied that methodology, she obtained an average depth of 3 to 4 kilometers.

Researchers could use this technique to regularly monitor pressures inside the chamber and make more precise estimates of when eruptions are going to occur.

Barton said that, ultimately, the finding might be more important in terms of energy.

“Hawaii has huge geothermal resources that haven’t been tapped fully,” he said, and quickly added that scientists would have to determine whether tapping that energy was practical – or safe.

“You’d have to drill some test bore holes. That’s dangerous on an active volcano, because then the lava could flow down and wipe out your drilling rig.”

Contact: Julie Ditkof, (614) 292-3307; Ditkof.1@osu.edu
Michael Barton, (614) 292-3132; Barton.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu.

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>