Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Stuff: Magma at Shallow Depth Under Hawaii

15.12.2010
Ohio State University researchers have found a new way to gauge the depth of the magma chamber that forms the Hawaiian Island volcanic chain, and determined that the magma lies much closer to the surface than previously thought.

The finding could help scientists predict when Hawaiian volcanoes are going to erupt. It also suggests that Hawaii holds great potential for thermal energy.

Julie Ditkof, an honors undergraduate student in earth sciences at Ohio State, described the study at the American Geophysical Union Meeting in San Francisco on Tuesday, December 14.

For her honors thesis, Ditkof took a technique that her advisor Michael Barton, professor of earth sciences, developed to study magma in Iceland, and applied it to Hawaii.

She discovered that magma lies an average of 3 to 4 kilometers (about 1.9 to 2.5 miles) beneath the surface of Hawaii.

“Hawaii was already unique among volcanic systems, because it has such an extensive plumbing system, and the magma that erupts has a unique and variable chemical composition,” Ditkof explained. “Now we know the chamber is at a shallow depth not seen anywhere else in the world.”

For example, Barton determined that magma chambers beneath Iceland lie at an average depth of 20 kilometers.

While that means the crust beneath Hawaii is much thinner than the crust beneath Iceland, Hawaiians have nothing to fear.

“The crust in Hawaii has been solidifying from eruptions for more than 300,000 years now. The crust doesn’t get consumed by the magma chamber. It floats on top,” Ditkof explained.

The results could help settle two scientific debates, however.

Researchers have wondered whether more than one magma chamber was responsible for the varying chemical compositions, even though seismological studies indicated only one chamber was present.

Meanwhile, those same seismological studies pegged the depth as shallow, while petrologic studies – studies of rock composition – pegged it deeper.

There has never been a way to prove who was right, until now.

“We suspected that the depth was actually shallow, but we wanted to confirm or deny all those other studies with hard data,” Barton said.

He and Ditkof determined that there is one large magma chamber just beneath the entire island chain that feeds the Hawaiian volcanoes through many different conduits.

They came to this conclusion after Ditkof analyzed the chemical composition of nearly 1,000 magma samples. From the ratio of some elements to others – aluminum to calcium, for example, or calcium to magnesium – she was able to calculate the pressure at which the magma had crystallized.

For his studies of Iceland, Barton created a methodology for converting those pressure calculations to depth. When Ditkof applied that methodology, she obtained an average depth of 3 to 4 kilometers.

Researchers could use this technique to regularly monitor pressures inside the chamber and make more precise estimates of when eruptions are going to occur.

Barton said that, ultimately, the finding might be more important in terms of energy.

“Hawaii has huge geothermal resources that haven’t been tapped fully,” he said, and quickly added that scientists would have to determine whether tapping that energy was practical – or safe.

“You’d have to drill some test bore holes. That’s dangerous on an active volcano, because then the lava could flow down and wipe out your drilling rig.”

Contact: Julie Ditkof, (614) 292-3307; Ditkof.1@osu.edu
Michael Barton, (614) 292-3132; Barton.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu.

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>