Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do holes make moles?

03.11.2010
Surprising first ancestor of bizarre marsupial moles

The mysterious origins of Australia's bizarre and secretive marsupial moles have been cast in a whole new and unexpected light with the first discovery in the fossil record of one of their ancestors.

The find reveals a remarkable journey through time, place and lifestyle: living marsupial moles are blind, earless and live underground in the deserts of the Northern Territory, Western Australia and South Australia, yet their ancestors lived in lush rainforest far away in north Queensland.

In the journal Proceedings of the Royal Society B, a team led by Professor Mike Archer, of the University of New South Wales (UNSW), reports the discovery of the remarkable 20 million-year-old fossil at the Riversleigh World Heritage fossil site.

Although related to kangaroos, koalas and other marsupials, living marsupial moles far more closely resemble Cape golden moles, which burrow through the desert sands of Africa. The two golden-furred animals not only look indistinguishable when seen side by side but share many other similarities in their teeth and skeletons that reflect their subterranean lifestyles.

Yet the Cape golden mole is a placental mammal - the group that includes rats, bats, elephants and humans – and these two very different branches of the mammal family evolved from a common ancestor at least 125 million years ago, says Professor Archer. Having diverged in ancestry, however, their similar lifestyles have meant that they have converged in anatomy.

"This fossil discovery came as a real shock," he says. "Until now, we had always assumed that marsupial moles must have evolved in an unknown ancient Australian desert because, like Cape golden moles, the living marsupial moles survive only in deserts.

"Yet this ancestral Australian mole, which is not as specialised as the living form, has been discovered in ancient rainforest deposits—not deserts. The fossils suggest that they became mole-like while burrowing through the mossy floors of those ancient forests."

This missing link has solved a second mystery about how the highly specialised V-shaped teeth of the living marsupial mole evolved. Although they are almost identical to the teeth of their African counterparts, it is now clear that they went down a completely different evolutionary pathway to get there, says co-author Dr Robin Beck of the American Museum of Natural History.

"This ancient link makes it clear that marsupials followed a completely different path from placentals but ended up with almost identical-looking teeth."

Co-author UNSW Associate Professor Suzanne Hand said: "It goes to the heart of global debates about relationship versus convergence - whether animals are similar because they are closely related or similar because they have had to adapt to related challenges. It's also exciting because it so beautifully demonstrates just how adaptive Australian marsupials can be when given the right evolutionary challenges and enough time to meet them."

Riversleigh research is supported by the Xstrata Community Partnership Program North Queensland and the Australian Research Council. The fossil has been named Naraboryctes philcreaseri , with the species name honouring Phil Creaser, a strong supporter of the CREATE Foundation. http://www.create.unsw.edu.au

Bob Beale | EurekAlert!
Further information:
http://www.unsw.edu.au
http://www.create.unsw.edu.au

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>