Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highs and lows: height changes in the ice sheets mapped

20.08.2014

Researchers from the Alfred Wegener Institute in Germany have used satellite data to map elevation and elevation changes in both Greenland and Antarctica.

The new maps are the most complete published to date, from a single satellite mission. They also show the ice sheets are losing volume at an unprecedented rate of about 500 cubic kilometres per year. The results are published today in The Cryosphere, an open access journal of the European Geosciences Union (EGU).


New elevation models of Greenland and Antarctica derived from CryoSat-2. Areas in red are higher than areas in blue. Helm et al., The Cryosphere, 2014

“The new elevation maps are snapshots of the current state of the ice sheets,” says lead-author Veit Helm of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), in Bremerhaven, Germany. The snapshots are very accurate, to just a few metres in height, and cover close to 16 million km2 of the area of the ice sheets. “This is 500,000 square kilometres more than any previous elevation model from altimetry – about the size of Spain.”

Satellite altimetry missions measure height by bouncing radar or laser pulses off the surface of the ice sheets and surrounding water. The team derived the maps, which show how height differs across each of the ice sheets, using just over a year’s worth of data collected in 2012 by the altimeter on board the European Space Agency satellite CryoSat-2. These 'digital elevation models’ incorporate a total of 7.5 million elevation measurements for Greenland and 61 million for Antarctica.

In addition to showing the highs and lows of the ice sheets at present, the study also highlights how the elevation has changed over the 2011–2014 period. Ice sheets gain mass through snowfall and lose it due to melting and accelerating glaciers, which carry ice from the interior of the ice sheet to the ocean. The researchers say it’s important to understand how ice thickness across Greenland and Antarctica has changed to model ice movements, and find out just how much ice sheets contribute to sea level rise.

The team derived the elevation change maps using a staggering 200 million data points for Antarctica and 14.3 million for Greenland collected by CryoSat-2 over the three-year period. The maps published in The Cryosphere reveal that Greenland alone is reducing in volume by about 375 cubic kilometres per year.

The two ice sheets combined are thinning at a rate of 500 cubic kilometres per year, the highest rate observed since altimetry satellite records began about 20 years ago. The researchers say the ice-sheets annual contribution to sea level rise doubled since 2009.

“Since 2009, the volume loss in Greenland has increased by a factor of about 2, and in the West Antarctic Ice Sheet by a factor of 3,” says AWI glaciologist Angelika Humbert, another of the study’s authors. Both the West Antarctic Ice Sheet and the Antarctic Peninsula, on the far west of the continent, are rapidly losing volume. By contrast, East Antarctica is gaining volume, though at a moderate rate that doesn’t compensate the losses on the other side of the continent.

The areas where the researchers detected the largest elevation changes were Jakobshavn Isbrae (Jakobshavn Glacier) in Greenland – recently found to be moving ice into the ocean faster than any other ice-sheet glacier – and Pine Island Glacier (PIG) in Antarctica. The new study confirms that PIG, like other glaciers in the West Antarctic, has been thinning rapidly in recent years.

The researchers highlight the role of CryoSat-2 and its radar altimeter (also known as SIRAL) in producing the height maps, particularly in regions where the surface slopes steeply and elevation changes are more pronounced. “These areas can be difficult to measure, but SIRAL enabled us to continuously observe the surface of the ice sheets with high precision and dense coverage, better than any previous system,” says Helm.

Please mention the name of the publication (The Cryosphere) if reporting on this story and, if reporting online, include a link to the paper (TBA) or to the journal website (http://www.the-cryosphere.net).

*More information*
This research, funded by the German Ministry of Economics and Technology, is presented in the paper ‘Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2’ to appear in the EGU open access journal The Cryosphere on 20 August 2014.

The scientific article is available online, free of charge, from the publication date onwards, at http://www.the-cryosphere.net/recent_papers.html. *A pre-print version of the paper and accompanying images are available for download at http://www.egu.eu/news/120/highs-and-lows-height-changes-in-the-ice-sheets-mappe....*

The team is composed of Veit Helm, Angelika Humbert and Heinrich Miller from the Glaciology Section of the Alfred Wegener Institute, the Helmholtz Centre for Polar and Marine Research in Bremerhaven, Germany.

The *European Geosciences Union (www.egu.eu)* is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 16 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The EGU 2015 General Assembly is taking place in Vienna, Austria, from 12 to 17 April 2015. For information regarding the press centre at the meeting and media registration, please check http://media.egu.eu closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

Weitere Informationen:

http://www.egu.eu/news/120/highs-and-lows-height-changes-in-the-ice-sheets-mappe...
http://www.the-cryosphere.net/

Dr. Bárbara Ferreira | European Geosciences Union

Further reports about: AWI Antarctic Antarctica CryoSat-2 EGU Geosciences Greenland Polar satellite

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>