Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highlight of the Polarstern Expedition

29.07.2010
Autonomous Underwater Vehicle of the Alfred Wegener Institute dives under the Arctic ice for the first time

The Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association for the first time sent its Autonomous Underwater Vehicle (AUV) on an under-ice mission at about 79° North. The four-metre-long, torpedo shaped underwater vehicle was deployed from the research icebreaker Polarstern under heavy pack ice. The vehicle was subsequently recovered by helicopter.

"We are one of the world's first working groups to have successfully carried out such an under-ice mission, a goal we have been working hard to achieve," says Dr. Thomas Soltwedel, the chief scientist of the expedition. "The samples and data obtained will shed a new light on phytoplankton production in the transition area between the permanently ice-covered Arctic Ocean and its ice-free marginal zone. Autonomous underwater vehicles are opening up new possibilities to investigate the ice-covered polar seas - areas that are of pivotal importance in climate research."

The underwater vehicle reaches a maximum depth of 3000 metres. It can travel a total distance of 70 kilometres at an average speed of five to six kilometres per hour. The planned course, desired depth and surfacing position are all entered into the AUV’s computer before deployment. The vehicle then carries out its mission independently, with no connection to the research vessel.

The autonomous submersible of the Alfred Wegener Institute was equipped with various measuring instruments, which continuously recorded and stored temperature and salinity data during the hour-long dive. A light sensor captured the photosynthetically active radiation in the surface layer of the ocean. A so-called fluorometer continuously recorded the distribution of micro-algae along the vehicle’s track. A newly developed sampling system collected 22 water samples at discrete time intervals, for later analysis.

The research vessel Polarstern is on its 25th Arctic expedition. The current cruise leg began in Longyearbyen (Spitsbergen) on the 30th June and will end in Reykjavik (Iceland) on the 29th July. Fifty scientists carried out long-term biological studies and oceanographic measurements for numerous national and international projects in the so-called HAUSGARTEN and in the Fram Strait. The HAUSGARTEN of the Alfred Wegener Institute is a long-term deep-sea observatory, which the scientists have set up to investigate the reactions of the marine Arctic ecosystem to global climate change.

The third leg, which is planned to carry out geoscience research in the northern Baffin Bay (Canada), begins in Reykjavik on the 31st July. Polarstern is expected back in Bremerhaven on the 10th October 2010.

Notes for Editors: Your contact person at the Alfred Wegener Institute is Margarete Pauls, Department of Communications and Media Relations (phone +49 (0) 471 4831-1180, e-mail: medien@awi.de. Please find printable images at http://www.awi.de.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the sixteen research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>