Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High Levels of Molecular Chlorine Found in Arctic Atmosphere

14.01.2014
Scientists studying the atmosphere above Barrow, Alaska, have discovered unprecedented levels of molecular chlorine in the air, a new study reports.

Molecular chlorine, from sea salt released by melting sea ice, reacts with sunlight to produce chlorine atoms. These chlorine atoms are highly reactive and can oxidize many constituents of the atmosphere including methane and elemental mercury, as well activate bromine chemistry, which is an even stronger oxidant of elemental mercury. Oxidized mercury is more reactive and can be deposited to the Arctic ecosystem.


Greg Huey

Jin Liao checks the instrumentation in Barrow, Alaska, during a research trip to measure molecular chlorine in the atmosphere. Liao is the first author of the study, published January 12, 2014, in the Advance Online Publication of Nature Geoscience

The study is the first time that molecular chlorine has been measured in the Arctic, and the first time that scientists have documented such high levels of molecular chlorine in the atmosphere.

“No one expected there to be this level of chlorine in Barrow or in polar regions,” said Greg Huey, a professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology in Atlanta.

The study was published January 12 in the journal Nature Geoscience and was supported by the National Science Foundation (NSF), part of the international multidisciplinary OASIS program.

The researchers directly measured molecular chlorine levels in the Arctic in the spring of 2009 over a six-week period using chemical ionization mass spectrometry. At first the scientists were skeptical of their data, so they spent several years running other experiments to ensure their findings were accurate.

The level of molecular chlorine above Barrow was measured as high as 400 parts per trillion, which is a high concentration considering that chlorine atoms are short –lived in the atmosphere because they are strong oxidants and are highly reactive with other atmospheric chemicals.

Molecular chlorine concentrations peaked in the early morning and late afternoon, and fell to near-zero levels at night. Average daytime molecular chlorine levels were correlated with ozone concentrations, suggesting that sunlight and ozone may be required for molecular chlorine formation.

Previous Arctic studies have documented high levels of oxidized mercury in Barrow and other polar regions. The major source of elemental mercury in the Arctic regions is coal-burning plants around the world. In the spring in Barrow, ozone and elemental mercury are often depleted from the atmosphere when halogens — chlorine and bromine — are released into the air from melting sea ice.

“Molecular chlorine is so reactive that it’s going to have a very strong influence on atmospheric chemistry,” Huey said.

Chlorine atoms are the dominant oxidant in Barrow, the study found. The area is part of a region with otherwise low levels of oxidants in the atmosphere, due to the lack of water vapor and ozone, which are the major precursors to making oxidants in many urban areas.

In Barrow, snow-covered ice pack extends in every directly except inland. The ultimate source of the molecular chlorine is the sodium chloride in sea salt, Huey said, most likely from the snow-covered ice pack. How the sea salt is transformed into molecular chlorine is unknown.

“We don’t really know the mechanism. It’s a mystery to us right now,” Huey said. “But the sea ice is changing dramatically, so we’re in a time where we have absolutely no predictive power over what’s going to happen to this chemistry. We’re really in the dark about the chlorine.”

Scientists do know that sea ice is rapidly changing, Huey said. The sea ice that lasts from one winter to the next winter is decreasing. This has created a larger area of melted ice, and more ice that comes and goes with the seasons. This seasonal variation in ice could release more molecular chlorine into the atmosphere.

“There is definite climate change happening in the Arctic,” Huey said. “That’s changing the nature of the ice, changing the volume of the ice, changing the surface area and changing the chemistry of the ice.”

Brett Israel | Newswise
Further information:
http://www.gatech.edu

Further reports about: Arctic Ocean Molecular Target atmosphere chlorine chlorine atom polar region sea ice

More articles from Earth Sciences:

nachricht NASA sees wind shear affecting Hurricane Ignacio
02.09.2015 | NASA/Goddard Space Flight Center

nachricht Oxygen oasis in Antarctic lake reflects Earth in the distant past
02.09.2015 | University of California - Davis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>