Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High CO2 levels cause warming in the tropics

30.06.2014

The impact of the greenhouse gas CO2 on the Earth's temperature is well established by climate models and temperature records over the past 100 years, as well as coupled records of carbon dioxide concentration and temperature throughout Earth history.

However, past temperature records have suggested that warming is largely confined to mid-to-high latitudes, especially the poles, whereas tropical temperatures appear to be relatively stable: the tropical thermostat model.

The new results, published today in Nature Geoscience, contradict those previous studies and indicate that tropical sea surface temperatures were warmer during the early-to-mid Pliocene, an interval spanning about 5 to 3 million years ago.

The Pliocene is of particular interest because CO2 concentrations then were thought to have been about 400 parts per million, the highest level of the past 5 million years but a level that was reached for the first time last summer due to human activity. The higher CO2 levels of the Pliocene have long been associated with a warmer world, but evidence from tropical regions suggested relatively stable temperatures.

Project leader and Director of the Cabot Institute, Professor Richard Pancost said: "These results confirm what climate models have long predicted – that although greenhouse gases cause greater warming at the poles they also cause warming in the tropics. Such findings indicate that few places on Earth will be immune to global warming and that the tropics will likely experience associated climate impacts, such as increased tropical storm intensity."

The scientists focussed their attention on the South China Sea which is at the fringe of a vast warm body of water, the West Pacific Warm Pool (WPWP). Some of the most useful temperature proxies are insensitive to temperature change in the heart of the WPWP, which is already at the maximum temperature they can record. By focussing on the South China Sea, the researchers were able to use a combination of geochemical records to reconstruct sea surface temperature in the past.

Not all of the records agree, however, and the researchers argue that certain tools used for reconstructing past ocean temperatures should be re-evaluated.

The paper's first author, Charlotte O'Brien added: "It's challenging to reconstruct the temperatures of the ocean many millions of years ago, and each of the tools we use has its own set of limitations. That is why we have used a combination of approaches in this investigation. We have shown that two different approaches agree – but a third approach agrees only if we make some assumptions about how the magnesium and calcium content of seawater has changed over the past 5 million years. That is an assumption that now needs to be tested."

The work was funded by the UK's Natural Environment Research Council and is ongoing.

Dr Gavin Foster at the University of Southampton is particularly interested in coupling the temperature records with improved estimates of Pliocene carbon dioxide levels. He said: "Just as we continue to challenge our temperature reconstructions we must challenge the corresponding carbon dioxide estimates. Together, they will help us truly understand the natural sensitivity of the Earth system and provide a better framework for predicting future climate change."

Hannah Johnson | Eurek Alert!
Further information:
http://www.bristol.ac.uk

Further reports about: CO2 China Geoscience Institute Pacific activity greenhouse interest temperature tropics

More articles from Earth Sciences:

nachricht Oceans may be large, overlooked source of hydrogen gas
21.07.2016 | Duke University

nachricht Groundwater discharge to upper Colorado River Basin varies in response to drought
21.07.2016 | US Geological Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>