Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden greenhouse emissions revealed in new Board of Agriculture report

10.03.2015

Restoration of wetlands can reduce greenhouse gas emissions. This is shown in a report that has been written in part by researchers from the University of Gothenburg.

Former wetlands that have been drained and which are currently used for forestry and agriculture give off 11.4 million tons of carbon dioxide equivalents. That can be compared with Sweden's total emissions of 57.6 million tons (when the land use sector is not included). But in Sweden's report to the Climate Convention, emissions from drained peatland are not visible since they are included with forest growth.


Restoring drained ground to wetland reduces the release of both carbon dioxide and nitrous oxide from the ground.

Photo: Karin Hjerpe.

New report from the Swedish Board of Agriculture shows the way
The report Emissions of Greenhouse Gases from Peatland shows that drained peatlands should be restored into wetlands so as to reduce greenhouse gas emissions. Studies of greenhouse gas emissions from drained peatlands that are used for forestry production show that nutrient-rich, well-drained areas of land release more greenhouse gases than nutrient-poor, wetter grounds do.

"The report states that some three percent of Sweden's land area is drained peatland and it discusses which of these areas should be rectified in the first instance," says Åsa Kasimir, researcher at the Department of Earth Sciences, University of Gothenburg.

She is one of the authors of the report which was published this year. The report has been produced by the Swedish Board of Agriculture (Jordbruksverket), the Swedish Forest Agency (Skogsstyrelsen), the Swedish Environmental Protection Agency (Naturvårdsverket), the Swedish University of Agricultural Sciences (SLU), the Federation of Swedish Farmers (LRF), Stockholm University and the University of Gothenburg.

Restored land reduces total emissions
Restoring drained ground to wetland reduces the release of both carbon dioxide and nitrous oxide from the ground. Although the release of methane will increase in the long term, the decrease of carbon dioxide and nitrous oxide will be greater which means that, all in all, greenhouse gas emissions from the ground will be reduced.

"Because a reduction in greenhouse gas emissions is now urgently needed, restoring wetlands is an effective environmental measure," says Åsa Kasimir.

New regulations needed to bring about change
In order to restore drained peatland, initiatives are needed by decision-makers. "Some conceivable ways of doing this would be for the government to issue guidelines or offer support," says Åsa Kasimir.

"Political measures must comprise either a reward or a penalty. Either landowners pay for their greenhouse gas emissions or the government pays landowners to restore their drained land to wetland. The latter is probably a more likely route since the government used to advocate drainage. The new Rural Development Programme (Landsbygdsprogrammet) could be a way forward."

Establishing wetlands can also give other benefits such as increased biological diversity and it may reduce nutrient leaching into lakes and watercourses.

Contact:
Åsa Kasimir, Department of Earth Sciences
asa.kasimir@gu.se, +46(0)31-786 1960, +46(0)704-911361

Weitere Informationen:

http://science.gu.se/english/News/News_detail//hidden-greenhouse-emissions-revea...

Henrik Axlid | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>