Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Get used to heat waves: Extreme El Nino events to double

20.01.2014
Rain pattern research confirms the impacts of unusuala and extreme El Nino events

Extreme weather events fuelled by unusually strong El Ninos, such as the 1983 heatwave that led to the Ash Wednesday bushfires in Australia, are likely to double in number as our planet warms.

An international team of scientists from organisations including the ARC Centre of Excellence for Climate System Science (CoECSS), the US National Oceanic and Atmospheric Administration and CSIRO, published their findings in the journal Nature Climate Change.

"We currently experience an unusually strong El Niño event every 20 years. Our research shows this will double to one event every 10 years," said co-author, Dr Agus Santoso of CoECSS.

"El Nino events are a multi-dimensional problem, and only now are we starting to understand better how they respond to global warming," said Dr Santoso. Extreme El Niño events develop differently from standard El Ninos, which first appear in the western Pacific. Extreme El Nino's occur when sea surface temperatures exceeding 28°C develop in the normally cold and dry eastern equatorial Pacific Ocean. This different location for the origin of the temperature increase causes massive changes in global rainfall patterns.

"The question of how global warming will change the frequency of extreme El Niño events has challenged scientists for more than 20 years," said co-author Dr Mike McPhaden of US National Oceanic and Atmospheric Administration.

"This research is the first comprehensive examination of the issue to produce robust and convincing results," said Dr McPhaden.

The impacts of extreme El Niño events extend to every continent across the globe.

The 1997-98 event alone caused $35󈞙 US billion in damage and claimed an estimated 23,000 human lives worldwide.

"During an extreme El Niño event countries in the western Pacific, such as Australia and Indonesia, experienced devastating droughts and wild fires, while catastrophic floods occurred in the eastern equatorial region of Ecuador and northern Peru," said lead author, CSIRO's Dr Wenju Cai

In Australia, the drought and dry conditions induced by the 1982-83 extreme El Niño preconditioned the Ash Wednesday Bushfire in southeast Australia, leading to 75 fatalities.

To achieve their results, the team examined 20 climate models that consistently simulate major rainfall reorganization during extreme El Niño events. They found a substantial increase in events from the present-day through the next 100 years as the eastern Pacific Ocean warmed in response to global warming.

"This latest research based on rainfall patterns, suggests that extreme El Niño events are likely to double in frequency as the world warms leading to direct impacts on extreme weather events worldwide."

"For Australia, this could mean summer heat waves, like that recently experienced in the south-east of the country, could get an additional boost if they coincide with extreme El Ninos," said co-author, Professor Matthew England from CoECSS.

Alvin Stone | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Earth Sciences:

nachricht NASA's TRMM Satellite Calculates Hurricanes Fay and Gonzalo Rainfall
23.10.2014 | NASA/Goddard Space Flight Center

nachricht Tropical Depression 9 Forms in Gulf of Mexico
23.10.2014 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

 
Latest News

NASA's TRMM Satellite Calculates Hurricanes Fay and Gonzalo Rainfall

23.10.2014 | Earth Sciences

New 3D Display Technology Promises Greater Energy Efficiency

23.10.2014 | Power and Electrical Engineering

World population likely to peak by 2070

23.10.2014 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>