Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hard rain - UI study of Midwest finds increase in heavy rainfalls over 60 years

14.03.2013
Heavy rains have become more frequent in the upper Midwest over the past 60 years, according to a study from the University of Iowa. The trend appears to hold true even with the current drought plaguing the region, the study's main author says.

The fact that temperatures over the country's midsection are rising, too, may be more than coincidence.The hotter the surface temperature, which has been the trend in the Midwest and the rest of the world, the more water that can be absorbed by the atmosphere.


The map shows location of selected rain gauges, with blue (red) triangles depicting sites with significant increasing (decreasing) trends, and white circles showing sites with little or no change. Adapted from Villarini et al., 2013.

And the more water available for precipitation means a greater chance for heavy rains, explains Gabriele Villarini, assistant professor in engineering at the UI and lead author of the paper, published in the Journal of Climate, the official publication of the American Meteorological Society.

“We found that there is a tendency toward increasing trends in heavy rainfall in the northern part of the study region, roughly the upper Mississippi River basin,” says Villarini, in the civil and environmental engineering department and an assistant research engineer at the IIHR-Hydroscience and Engineering. “We tried to explain these results in light of changes in temperature. We found that the northern part of the study region—including Minnesota, Wisconsin, Iowa, and Illinois—is also the area experiencing large increasing trends in temperature, resulting in an increase in atmospheric water vapor.“

Villarini notes the current drought affecting the Midwest and other regions of the country has occurred too recently to be included in his study, whose data goes from about 1950 to 2010.

“I’m not looking at the average annual rainfall. I’m studying heavy rainfall events,” he says. “We may currently be in deficit for overall rainfall, but we may also be in the normal range when it comes to the number of heavy rainfall days.”

Villarini and his colleagues examined changes in the frequency of heavy rainfall through daily measurements at 447 rain gauge stations in the central and southern United States. The states included were: Minnesota, Wisconsin Michigan, Iowa, Illinois, Indiana, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, Alabama, and Mississippi.

Each rain gauge station has a record of at least 50 years. The data cover much of the 20th century and the first decade of this century. For the purposes of the study, heavy rainfall was defined as days in which rainfall exceeded the 95th percentile of the at-site rainfall distribution.

Villarini notes that while his study focused on changes in temperature and the frequency of heavy rainfall over the central United States, other published results have shown rainfall increases to be linked to changes in irrigation over the Ogallala Aquifer, which runs from Nebraska to northern Texas. Based on those studies, he says it is reasonable to assume that changes in land use, land cover and agricultural practice would affect the amount of water vapor in the atmosphere as well.

His colleagues in the study are James Smith, professor at Princeton University; and Gabriel Vecchi, of the National Oceanic and Atmospheric Administration.

The paper is titled, “Changing Frequency of Heavy Rainfall over the Central United States.” It was first published in January.

The research was funded by NASA and the Willis Research Network.
Contacts
Gabriele Villarini, Engineering, 319-384-0596
Gary Galuzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>