Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harbingers of increased Atlantic hurricane activity identified

14.08.2009
Reconstructions of past hurricane activity in the Atlantic Ocean indicate that the most active hurricane period in the past was during the "Medieval Climate Anomaly" about a thousand years ago when climate conditions created a "perfect storm" of La Niña-like conditions combined with warm tropical Atlantic waters.

"La Niña conditions are favorable for hurricanes because they lead to less wind shear in the tropical Atlantic," said Michael E. Mann, professor of meteorology, Penn State. When combined with warm tropical Atlantic ocean temperatures, a requirement for hurricanes to form, conditions become ideal for high levels of activity."

During an El Niño, the more familiar half of the El Niño Southern Oscillation (ENSO), there is more wind shear in the Caribbean and fewer hurricanes. The low Atlantic hurricane activity so far during this current season is likely related to the mitigating effects of an emerging El Niño event.

"Hurricane activity since the mid-1990s is the highest in the historical record, but that only goes back a little more than a century and is most accurate since the advent of air travel and satellites in recent decades," said Mann. "It is therefore difficult to assess if the recent increase in hurricane activity is in fact unusual."

Mann, working with Jonathan D. Woodruff, assistant professor of geosciences, University of Massachusetts; Jeffrey P. Donnelly, associate scientist, Woods Hole Oceanographic Institution, and Zhihua Zhang, postdoctoral assistant, Penn State, reconstructed the past 1,500 years of hurricanes using two independent methods. They report their results in today's (Aug. 13) issue of Nature.

One estimate of hurricane numbers is based on sediment deposited during landfall hurricanes. The researchers looked for coastal areas where water breached the normal boundaries of the beaches and overwashed into protected basins. Samples from Puerto Rico, the U.S. Gulf coast, the Southern U.S. coast, the mid-Atlantic coast and the southeastern New England coast were radiocarbon dated and combined to form a history of landfall hurricanes.

The other method used a previously developed statistical model for predicting hurricane activity based on climate variables. They applied the model to paleoclimate reconstructions of tropical Atlantic sea surface temperature, the history of ENSO and another climate pattern called the North Atlantic Oscillation (NAO), which is related to the year-to-year fluctuations of the jet stream. Warm waters are necessary for hurricane development, ENSO influences the wind shear and the NAO controls the path of storms, determining whether or not they encounter favorable conditions for development.

The researchers compared the results of both hurricane estimates, taking into account that the sediment measurements only record landfall hurricanes, but that the relationship between landfall hurricanes and storms that form and dissipate without ever hitting land can be estimated.

Both hurricane reconstructions indicate similar overall patterns and both indicate a high period of hurricane activity during the Medieval Climate Anomaly around AD 900 to 1100.

"We are at levels now that are about as high as anything we have seen in the past 1,000 years," said Mann.

The two estimates of hurricane numbers do not match identically. The researchers note that they do not know the exact force of a storm that will breach the beach area and deposit sediments. They are also aware that the relationship between landfalling hurricanes and those that remain at sea is not uniform through all time periods. However, they believe that key features like the medieval peak and subsequent lull are real and help to validate our current understanding of the factors governing long-term changes in Atlantic hurricane activity.

One thing the estimates show is that long periods of warm Atlantic ocean conditions produce greater Atlantic hurricane activity.

"It seems that the paleodata support the contention that greenhouse warming may increase the frequency of Atlantic tropical storms," said Mann. "It may not be just that the storms are stronger, but that there are there may be more of them as well."

The National Science Foundation and the Bermuda Institute for Ocean Sciences supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>