Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Happened to Dinosaurs' Predecessors After Earth's Largest Extinction 252 Million Years Ago?

30.04.2013
Predecessors to dinosaurs missed the race to fill habitats emptied when nine out of 10 species disappeared during Earth's largest mass extinction 252 million years ago.

Or did they?

That thinking was based on fossil records from sites in South Africa and southwest Russia.

It turns out, however, that scientists may have been looking in the wrong places.

Newly discovered fossils from 10 million years after the mass extinction reveal a lineage of animals thought to have led to dinosaurs in Tanzania and Zambia.

That's still millions of years before dinosaur relatives were seen in the fossil record elsewhere on Earth.

"The fossil record from the Karoo of South Africa, for example, is a good representation of four-legged land animals across southern Pangea before the extinction," says Christian Sidor, a paleontologist at the University of Washington.

Pangea was a landmass in which all the world's continents were once joined together. Southern Pangea was made up of what is today Africa, South America, Antarctica, Australia and India.

"After the extinction," says Sidor, "animals weren't as uniformly and widely distributed as before. We had to go looking in some fairly unorthodox places."

Sidor is the lead author of a paper reporting the findings; it appears in this week's issue of the journal Proceedings of the National Academy of Sciences.

The insights come from seven fossil-hunting expeditions in Tanzania, Zambia and Antarctica funded by the National Science Foundation (NSF). Additional work involved combing through existing fossil collections.

"These scientists have identified an outcome of mass extinctions--that species ecologically marginalized before the extinction may be 'freed up' to experience evolutionary bursts then dominate after the extinction," says H. Richard Lane, program director in NSF's Division of Earth Sciences.

The researchers created two "snapshots" of four-legged animals about five million years before, and again about 10 million years after, the extinction 252 million years ago.

Prior to the extinction, for example, the pig-sized Dicynodon--said to resemble a fat lizard with a short tail and turtle's head--was a dominant plant-eating species across southern Pangea.

After the mass extinction, Dicynodon disappeared. Related species were so greatly decreased in number that newly emerging herbivores could then compete with them.

"Groups that did well before the extinction didn't necessarily do well afterward," Sidor says.

The snapshot of life 10 million years after the extinction reveals that, among other things, archosaurs roamed in Tanzanian and Zambian basins, but weren't distributed across southern Pangea as had been the pattern for four-legged animals before the extinction.

Archosaurs, whose living relatives are birds and crocodilians, are of interest to scientists because it's thought that they led to animals like Asilisaurus, a dinosaur-like animal, and Nyasasaurus parringtoni, a dog-sized creature with a five-foot-long tail that could be the earliest dinosaur.

"Early archosaurs being found mainly in Tanzania is an example of how fragmented animal communities became after the extinction," Sidor says.

A new framework for analyzing biogeographic patterns from species distributions, developed by paper co-author Daril Vilhena of University of Washington, provided a way to discern the complex recovery.

It revealed that before the extinction, 35 percent of four-legged species were found in two or more of the five areas studied.

Some species' ranges stretched 1,600 miles (2,600 kilometers), encompassing the Tanzanian and South African basins.

Ten million years after the extinction, there was clear geographic clustering. Just seven percent of species were found in two or more regions.

The technique--a new way to statistically consider how connected or isolated species are from each other--could be useful to other paleontologists and to modern-day biogeographers, Sidor says.

Beginning in the early 2000s, he and his co-authors conducted expeditions to collect fossils from sites in Tanzania that hadn't been visited since the 1960s, and in Zambia where there had been little work since the 1980s.

Two expeditions to Antarctica provided additional finds, as did efforts to look at museum fossils that had not been fully documented or named.

The fossils turned out to hold a treasure trove of information, the scientists say, on life some 250 million years ago.

Other co-authors of the paper are Adam Huttenlocker, Brandon Peecook, Sterling Nesbitt and Linda Tsuji from University of Washington; Kenneth Angielczyk of the Field Museum of Natural History in Chicago; Roger Smith of the Iziko South African Museum in Cape Town; and Sébastien Steyer from the National Museum of Natural History in Paris.

The project was also funded by the National Geographic Society, Evolving Earth Foundation, the Grainger Foundation, the Field Museum/IDP Inc. African Partners Program, and the National Research Council of South Africa.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Sandra Hines, UW (206) 543-2580 shines@uw.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov/news/news_summ.jsp?cntn_id=127749&org=NSF&from=news

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>