Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gulf of Mexico Topography Played Key Role in Bacterial Consumption of Deepwater Horizon Spill

10.01.2012
Scientists document how geology, biology worked together after oil disaster

When scientist David Valentine and colleagues published results of a study in early 2011 reporting that bacterial blooms had consumed almost all the deepwater methane plumes after the 2010 Gulf of Mexico Deepwater Horizon oil spill, some were skeptical.

How, they asked the University of California at Santa Barbara (UCSB) geochemist, could almost all the gas emitted disappear?

In new results published this week in the journal Proceedings of the National Academy of Sciences (PNAS), Valentine; Igor Mezic, a mechanical engineer at UCSB; and coauthors report that they used an innovative computer model to demonstrate the respective roles of underwater topography, currents and bacteria in the Gulf of Mexico.

This confluence led to the disappearance of methane and other chemicals that spewed from the well after it erupted on April 20, 2010.

The National Science Foundation (NSF) funded the research.

"As scientists continue to peel apart the layers of the Deepwater Horizon microbial story," said Don Rice, director of NSF's chemical oceanography program, "we're learning a great deal about how the ocean's biogeochemical system interacts with petroleum--every day, everywhere, twenty-four/seven. "

The results are an extension of a 2011 study, also funded by NSF, in which Valentine and other researchers explained the role of bacteria in consuming more than 200,000 metric tons of dissolved methane.

"It seemed that we were putting together a lot of pieces," Valentine said. "We would go out, take some samples, and study what was happening in those samples, both during and after the spill.

"There was a transition of the microorganisms and a transition of the biodegradation, and it became clear that we needed to incorporate the movement of the water."

The scientists believed that there was an important component of the physics of the water motion--of where the water went.

Valentine turned to Mezic, who had published results in 2011 forecasting where the oil slick would spread.

"Our work was on the side of: here's where the oil leaked and here's where it went," Mezic said. "We agreed that it would be beautiful if we could put a detailed hydrodynamic model together with a detailed bacterial model."

The resulting computer model has data on the chemical composition of hydrocarbons flowing into the Gulf of Mexico, and is seeded with 52 types of bacteria that consumed the hydrocarbons.

The physical characteristics were based on the U.S. Navy's model of the gulf's ocean currents and on observations of water movements immediately after the spill and for several months after it ended.

The scientists then sought the help of Mezic's former colleagues--engineers at the University of Rijeka in Croatia.

"We needed somebody to build the software," Mezic said. "It was a big task, a mad rush, but they did it.

"The power behind this is a tour de force. A typical study of this kind would take a year, at least. We found a way that led us to answers in three or four months."

The model revealed that one of the key factors in the disappearance of the hydrocarbon plumes was the physical structure of the Gulf of Mexico.

"It's the geography of the gulf," Valentine said. "It's almost like a box canyon. As you go northward, it comes to a head.

"As a result, it's not a river down there; it's more of a bay. And the spill happened in a fairly enclosed area, particularly at the depths where hydrocarbons were dissolving."

When the hydrocarbons were released from the well, bacteria bloomed. In other locations outside the gulf, those blooms would be swept away by prevailing ocean currents.

But in the Gulf of Mexico, they swirled around as if they were in a washing machine, and often circled back over the leaking well, sometimes two or three times.

"What we see is that some of the water that already had been exposed to hydrocarbons at the well and had experienced bacterial blooms, then came back over the well," Valentine said.

"So these waters already had a bacterial community in them, then they got a second input of hydrocarbons."

As the water came back over, he explained, the organisms that had already bloomed and eaten their preferred hydrocarbons immediately attacked and went after certain compounds.

Then they were fed a new influx of hydrocarbons.

"When you have these developed communities coming back over the wellhead, they consume the hydrocarbons much more quickly," Valentine said, "and the bacterial composition and hydrocarbon composition behaves differently. It changes at a different rate than when the waters were first exposed."

The model allowed the scientists to test this hypothesis and to look at some of the factors that had been measured: oxygen deficits and microbial community structure.

"What we found was very good agreement between the two," Valentine said.

"We have about a 70 percent success rate of hitting where those oxygen declines were. It means that not only is the physics model doing a good job of moving the water in the right place, but also that the biology and chemistry results are doing a good job, because you need those to get the oxygen declines. It's really a holistic view of what's going on."

There are valuable lessons to be learned from the study, the scientists believe.

"It tells us that the motion of the water is an important component in determining how rapidly different hydrocarbons are broken down," Valentine said. "It gives us concepts that we can now apply to other situations, if we understand the physics."

Mezic said that this should be a wake-up call for anyone thinking of drilling for oil.

"The general perspective is that we need to pay more attention to where the currents are flowing around the places where we have spills," he said.

"We don't have models for most of those. Why not mandate a model?

"This one worked--three-quarters of the predictions were correct. For almost everything, you can build a model. You build an airplane, you have a model. But you can drill without having a model. It's possible we can predict this. That's what a model is for."

The U.S. Department of Energy and the U.S. Office of Naval Research also supported the research.

In addition to Valentine and Mezic, co-authors of the paper are Senka Macesic, Nelida Crnjaric-Zic, and Stefan Ivic, of the University of Rijeka in Croatia; Patrick J. Hogan of the Naval Research Laboratory; Sophie Loire of the Department of Mechanical Engineering at UCSB; and Vladimir A. Fonoberov of Aimdyn, Inc. of Santa Barbara.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
George Foulsham, UCSB (805) 893-3071 george.foulsham@ia.ucsb.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>