Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundwater pumping leads to sea level rise, cancels out effect of dams

09.05.2012
As people pump groundwater for irrigation, drinking water, and industrial uses, the water doesn’t just seep back into the ground — it also evaporates into the atmosphere, or runs off into rivers and canals, eventually emptying into the world’s oceans. This water adds up, and a new study calculates that by 2050, groundwater pumping will cause a global sea level rise of about 0.8 millimeters per year.
“Other than ice on land, the excessive groundwater extractions are fast becoming the most important terrestrial water contribution to sea level rise,” said Yoshihide Wada, with Utrecht University in the Netherlands and lead author of the study. In the coming decades, he noted, groundwater contributions to sea level rise are expected to become as significant as those of melting glaciers and ice caps outside of Greenland and the Antarctic.

Between around 1970 and 1990, sea level rise caused by groundwater pumping was cancelled out as people built dams, trapping water in reservoirs so the water wouldn’t empty into the sea, Wada said. His research shows that starting in the 1990s, that changed as populations started pumping more groundwater and building fewer dams.

The researchers looked not only at the contribution of groundwater pumping, which they had investigated before, but also at other factors that influence the amount of terrestrial water entering the oceans, including marsh drainage, forest clearing, and new reservoirs. Wada and his colleagues calculate that by mid-century, the net effect of these additional factors is an additional 0.05 mm per year of annual sea level rise, on top of the contribution from groundwater pumping alone.
The research team’s article is being published today in Geophysical Research Letters, a journal of the American Geophysical Union.

The last report of the United Nations Intergovernmental Panel on Climate Change in 2007 addressed the effect on sea level rise of melting ice on land, including glaciers and ice caps, Wada said. But it didn’t quantify the future contribution from other terrestrial water sources, such as groundwater, reservoirs, wetlands and more, he said, because the report’s authors thought the estimates for those sources were too uncertain.

“They assumed that the positive and negative contribution from the groundwater and the reservoirs would cancel out,” Wada said. “We found that wasn’t the case. The contribution from the groundwater is going to increase further, and outweigh the negative contribution from reservoirs.”

In the current study, the researchers estimated the impact of groundwater depletion since 1900 using data from individual countries on groundwater pumping, model simulations of groundwater recharge, and reconstructions of how water demand has changed over the years. They also compared and corrected those estimates with observations from sources such as the GRACE satellite, which uses gravity measurements to determine variations in groundwater storage.
With these groundwater depletion rates, Wada and his colleagues estimate that in 2000, people pumped about 204 cubic kilometers (49 cubic miles) of groundwater, most of which was used for irrigation. Most of this, in turn, evaporates from plants, enters the atmosphere and rains back down. Taking into account the seepage of groundwater back into the aquifers, as well as evaporation and runoff, the researchers estimated that groundwater pumping resulted in sea level rise of about 0.57 mm in 2000 — much greater than the 1900 annual sea level rise of 0.035 mm.

The researchers also projected groundwater depletion, reservoir storage, and other impacts for the rest of the century, using climate models and projected population growth and land use changes. The increase in groundwater depletion between 1900 and 2000 is due mostly to increased water demands, the researchers find. But the increase projected between 2000 and 2050 is mostly due to climate-related factors like decreased surface water availability and irrigated agricultural fields that dry out faster in a warmer climate.

If things continue as projected, Wada estimates that by 2050, the net, cumulative effect of these non-ice, land-based water sources and reservoirs — including groundwater pumping, marsh drainage, dams, and more — will have added 31 mm to sea level rise since 1900.

The new study assumes that, where there is groundwater, people will find a way to extract it, Wada said, but some of his colleagues are investigating the limits of groundwater extraction. One way to decrease groundwater’s contribution to sea level rise, he noted, is to improve water efficiency in agriculture — to grow more with less groundwater.
Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press.

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:

"Past and future contribution of global groundwater depletion to sea-level rise"

Authors:
Yoshihide Wada Department of Physical Geography, Utrecht University, Utrecht, Netherlands;Ludovicus P. H. van Beek Department of Physical Geography, Utrecht University, Utrecht, Netherlands;Frederiek C. Sperna Weiland Deltares, Delft, Netherlands;Benjamin F. Chao and Yun-Hao Wu Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan;Marc F. P. Bierkens Department of Physical Geography, Utrecht University, Utrecht, Netherlands, Unit Soil and Groundwater Systems, Deltares, Utrecht, Netherlands.

Contact Information for the Authors:

Yoshihide Wada, Email: y.wada@uu.nl, Telephone: +31 (0)30 253 2776

Kate Ramsayer | EurekAlert!
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>