Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ground-breaking work sheds new light on volcanic activity

06.01.2014
Factors determining the frequency and magnitude of volcanic phenomena have been uncovered by an international team of researchers.

Experts from the Universities of Geneva, Bristol and Savoie carried out over 1.2 million simulations to establish the conditions in which volcanic eruptions of different sizes occur.

The team used numerical modelling and statistical techniques to identify the circumstances that control the frequency of volcanic activity and the amount of magma that will be released.

The researchers, including Professor Jon Blundy and Dr Catherine Annen from Bristol University's School of Earth Sciences, showed how different size eruptions have different causes. Small, frequent eruptions are known to be triggered by a process called magma replenishment, which stresses the walls around a magma chamber to breaking point. However, the new research shows that larger, less frequent eruptions are caused by a different phenomenon known as magma buoyancy, driven by slow accumulation of low-density magma beneath a volcano.

Predictions of the scale of the largest possible volcanic eruption on earth have been made using this new insight. This is the first time scientists have been able to establish a physical link between the frequency and magnitude of volcanic eruptions and their findings will be published today in the journal Nature Geoscience.

"We estimate that a magma chamber can contain a maximum of 35,000 km3 of eruptible magma. Of this, around 10 per cent is released during a super-eruption, which means that the largest eruption could release approximately 3,500 km3 of magma", explained lead researcher Luca Caricchi, assistant professor at the Section of Earth and Environmental Sciences at the University of Geneva and ex-research fellow at the University of Bristol.

Volcanic eruptions may be frequent yet their size is notoriously hard to predict. For example, the Stromboli volcano in Italy ejects magma every ten minutes and would take two days to fill an Olympic swimming pool. However, the last super-eruption of a volcano, which occurred over 70,000 years ago, spewed out enough magma to fill a billion swimming pools.

This new research identifies the main physical factors involved in determining the frequency and size of eruptions and is essential to understanding phenomena that effect human life, such as the 2010 ash cloud caused by the eruption of Eyjafallajökull in Iceland.

Professor Jon Blundy said: "Some volcanoes ooze modest quantities of magma at regular intervals, whereas others blow their tops in infrequent super-eruptions. Understanding what controls these different types of behaviour is a fundamental geological question.

"Our work shows that this behaviour results from interplay between the rate at which magma is supplied to the shallow crust underneath a volcano and the strength of the crust itself. Very large eruptions require just the right (or wrong!) combination of magma supply and crustal strength."

Hannah Johnson | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Satellite sees Tropical Storm Guillermo nearing Hawaii
05.08.2015 | NASA/Goddard Space Flight Center

nachricht Greenhouse gases' millennia-long ocean legacy
04.08.2015 | Carnegie Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greenhouse gases' millennia-long ocean legacy

Continuing current carbon dioxide (CO2) emission trends throughout this century and beyond would leave a legacy of heat and acidity in the deep ocean. These...

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Success 4.0 – Is Your Company Fit for the Future? New Series of Events for Executives

04.08.2015 | Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

 
Latest News

The ghost of a dying star

05.08.2015 | Physics and Astronomy

Finding the 'conservación' in conservation genetics

05.08.2015 | Ecology, The Environment and Conservation

Satellite sees Tropical Storm Guillermo nearing Hawaii

05.08.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>