Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenland ice sheet's winds driving tundra soil erosion, Dartmouth study finds


Strong winds blowing off the Greenland Ice Sheet are eroding soil and vegetation in the surrounding tundra, making it less productive for caribou and other grazing animals, carbon storage and nutrient cycling, a Dartmouth College study finds.

Arctic soils are a critical but fragile ecological resource threatened by wildfire, permafrost degradation and other climate-related disturbances that are well studied. But wind-driven soil erosion has not been well documented, especially in western Greenland where it poses the greatest threat to soil stability.

Ruth Heindel, a Ph.D. student in Dartmouth's Department of Earth Sciences, and her colleagues found that winds blowing off the Greenland Ice Sheet are eroding soil and vegetation in the surrounding tundra.

Credit: Ruth Heindel

The findings appear in the journal Annals of the Association of American Geographers. A PDF is available on request.

"Understanding the current distribution of wind-eroded patches is a first step toward a more complete picture of regional wind erosion and its ecological impacts, especially as the Arctic continues to experience rapid environmental change and warming temperatures," says lead author Ruth Heindel, a Ph.D. student in Dartmouth's Department of Earth Sciences and a fellow in the IGERT Polar Environmental Change program.

The researchers used satellite imagery and remote sensing techniques to analyze wind erosion in the Kangerlussuaq region of western Greenland, where bare ground patches around the ice sheet are much less productive than the surrounding landscape. The region's soils have developed on a layer of loess, or loose sediment that is easily eroded by the wind.

The researchers wanted to know if soil erosion is controlled by proximity to the ice sheet or by the lay of the land, including the direction and steepness of nearby hillsides. In addition, they considered whether bare patches near the ice sheet are similar in size, distribution and denudation as those farther away since wind patterns, vegetation and climate all vary with distance from the ice sheet. Winds blowing off the ice sheet tend to be drier and colder than those coming off the fjord.

Results showed that bare patches covered 22 percent of the land in the study area, ranging in size from about 100 square feet to more than 1,000 square feet. The bare patches were more widespread near the ice sheet but restricted to steep south-facing slopes farther away from the ice sheet. This pattern suggests that strong downslope winds blowing off the ice sheet are responsible for the soil erosion. In addition, the eroded patches close to the ice sheet contain less vegetation than those farther away.

The vegetation around the eroded areas is a mixture of shrubs and grasses, but grasses dominate within the eroded patches. Across the Arctic, shrub species are expanding into grass habitat, but the new findings show how wind erosion may limit the spread of shrubs by providing better habitat for grasses or an environment dominated by lichens, mosses, cyanobacteria and microfungi.

The findings are a snapshot of current soil erosion in western Greenland rather than an analysis of changes over time, which the researchers are currently conducting. The Greenland Ice Sheet has experienced record melting in recent years, but it is relatively stable in western Greenland. If the ice sheet retreats in this region, soil erosion is expected to be more restricted to steep south-facing slopes, but the already bare patches could remain denuded for a long time.


Lead author Ruth Heindel is available to comment at

The study's co-authors are Jonathan Chipman (, director of the Citrin Family GIS/Applied Spatial Analysis Laboratory ( in the Department of Geography (, and Ross Virginia (, a professor of Environmental Studies ( and director of the Dickey Center's Institute of Arctic Studies ( This study was supported by the National Science Foundation.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit:

Media Contact

John Cramer


John Cramer | EurekAlert!

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>