Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenland ice sheet's winds driving tundra soil erosion, Dartmouth study finds


Strong winds blowing off the Greenland Ice Sheet are eroding soil and vegetation in the surrounding tundra, making it less productive for caribou and other grazing animals, carbon storage and nutrient cycling, a Dartmouth College study finds.

Arctic soils are a critical but fragile ecological resource threatened by wildfire, permafrost degradation and other climate-related disturbances that are well studied. But wind-driven soil erosion has not been well documented, especially in western Greenland where it poses the greatest threat to soil stability.

Ruth Heindel, a Ph.D. student in Dartmouth's Department of Earth Sciences, and her colleagues found that winds blowing off the Greenland Ice Sheet are eroding soil and vegetation in the surrounding tundra.

Credit: Ruth Heindel

The findings appear in the journal Annals of the Association of American Geographers. A PDF is available on request.

"Understanding the current distribution of wind-eroded patches is a first step toward a more complete picture of regional wind erosion and its ecological impacts, especially as the Arctic continues to experience rapid environmental change and warming temperatures," says lead author Ruth Heindel, a Ph.D. student in Dartmouth's Department of Earth Sciences and a fellow in the IGERT Polar Environmental Change program.

The researchers used satellite imagery and remote sensing techniques to analyze wind erosion in the Kangerlussuaq region of western Greenland, where bare ground patches around the ice sheet are much less productive than the surrounding landscape. The region's soils have developed on a layer of loess, or loose sediment that is easily eroded by the wind.

The researchers wanted to know if soil erosion is controlled by proximity to the ice sheet or by the lay of the land, including the direction and steepness of nearby hillsides. In addition, they considered whether bare patches near the ice sheet are similar in size, distribution and denudation as those farther away since wind patterns, vegetation and climate all vary with distance from the ice sheet. Winds blowing off the ice sheet tend to be drier and colder than those coming off the fjord.

Results showed that bare patches covered 22 percent of the land in the study area, ranging in size from about 100 square feet to more than 1,000 square feet. The bare patches were more widespread near the ice sheet but restricted to steep south-facing slopes farther away from the ice sheet. This pattern suggests that strong downslope winds blowing off the ice sheet are responsible for the soil erosion. In addition, the eroded patches close to the ice sheet contain less vegetation than those farther away.

The vegetation around the eroded areas is a mixture of shrubs and grasses, but grasses dominate within the eroded patches. Across the Arctic, shrub species are expanding into grass habitat, but the new findings show how wind erosion may limit the spread of shrubs by providing better habitat for grasses or an environment dominated by lichens, mosses, cyanobacteria and microfungi.

The findings are a snapshot of current soil erosion in western Greenland rather than an analysis of changes over time, which the researchers are currently conducting. The Greenland Ice Sheet has experienced record melting in recent years, but it is relatively stable in western Greenland. If the ice sheet retreats in this region, soil erosion is expected to be more restricted to steep south-facing slopes, but the already bare patches could remain denuded for a long time.


Lead author Ruth Heindel is available to comment at

The study's co-authors are Jonathan Chipman (, director of the Citrin Family GIS/Applied Spatial Analysis Laboratory ( in the Department of Geography (, and Ross Virginia (, a professor of Environmental Studies ( and director of the Dickey Center's Institute of Arctic Studies ( This study was supported by the National Science Foundation.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit:

Media Contact

John Cramer


John Cramer | EurekAlert!

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>