Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet's winds driving tundra soil erosion, Dartmouth study finds

13.08.2015

Strong winds blowing off the Greenland Ice Sheet are eroding soil and vegetation in the surrounding tundra, making it less productive for caribou and other grazing animals, carbon storage and nutrient cycling, a Dartmouth College study finds.

Arctic soils are a critical but fragile ecological resource threatened by wildfire, permafrost degradation and other climate-related disturbances that are well studied. But wind-driven soil erosion has not been well documented, especially in western Greenland where it poses the greatest threat to soil stability.


Ruth Heindel, a Ph.D. student in Dartmouth's Department of Earth Sciences, and her colleagues found that winds blowing off the Greenland Ice Sheet are eroding soil and vegetation in the surrounding tundra.

Credit: Ruth Heindel

The findings appear in the journal Annals of the Association of American Geographers. A PDF is available on request.

"Understanding the current distribution of wind-eroded patches is a first step toward a more complete picture of regional wind erosion and its ecological impacts, especially as the Arctic continues to experience rapid environmental change and warming temperatures," says lead author Ruth Heindel, a Ph.D. student in Dartmouth's Department of Earth Sciences and a fellow in the IGERT Polar Environmental Change program.

The researchers used satellite imagery and remote sensing techniques to analyze wind erosion in the Kangerlussuaq region of western Greenland, where bare ground patches around the ice sheet are much less productive than the surrounding landscape. The region's soils have developed on a layer of loess, or loose sediment that is easily eroded by the wind.

The researchers wanted to know if soil erosion is controlled by proximity to the ice sheet or by the lay of the land, including the direction and steepness of nearby hillsides. In addition, they considered whether bare patches near the ice sheet are similar in size, distribution and denudation as those farther away since wind patterns, vegetation and climate all vary with distance from the ice sheet. Winds blowing off the ice sheet tend to be drier and colder than those coming off the fjord.

Results showed that bare patches covered 22 percent of the land in the study area, ranging in size from about 100 square feet to more than 1,000 square feet. The bare patches were more widespread near the ice sheet but restricted to steep south-facing slopes farther away from the ice sheet. This pattern suggests that strong downslope winds blowing off the ice sheet are responsible for the soil erosion. In addition, the eroded patches close to the ice sheet contain less vegetation than those farther away.

The vegetation around the eroded areas is a mixture of shrubs and grasses, but grasses dominate within the eroded patches. Across the Arctic, shrub species are expanding into grass habitat, but the new findings show how wind erosion may limit the spread of shrubs by providing better habitat for grasses or an environment dominated by lichens, mosses, cyanobacteria and microfungi.

The findings are a snapshot of current soil erosion in western Greenland rather than an analysis of changes over time, which the researchers are currently conducting. The Greenland Ice Sheet has experienced record melting in recent years, but it is relatively stable in western Greenland. If the ice sheet retreats in this region, soil erosion is expected to be more restricted to steep south-facing slopes, but the already bare patches could remain denuded for a long time.

###

Lead author Ruth Heindel is available to comment at ruth.c.heindel.gr@dartmouth.edu.

The study's co-authors are Jonathan Chipman (http://dartmouth.edu/faculty-directory/jonathan-chipman), director of the Citrin Family GIS/Applied Spatial Analysis Laboratory (http://www.dartmouth.edu/~spatial/) in the Department of Geography (http://geography.dartmouth.edu/), and Ross Virginia (http://www.dartmouth.edu/~ravirg/index.html), a professor of Environmental Studies (http://envs.dartmouth.edu/) and director of the Dickey Center's Institute of Arctic Studies (http://dickey.dartmouth.edu/environment). This study was supported by the National Science Foundation.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>