Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenland ice sheet losing mass on northwest coast

Ice loss from the Greenland ice sheet, which has been increasing during the past decade over its southern region, is now moving up its northwest coast, according to a new international study.

Led by the Denmark Technical Institute's National Space Institute in Copenhagen and involving the University of Colorado at Boulder, the study indicated the ice-loss acceleration began moving up the northwest coast of Greenland starting in late 2005.

The team drew their conclusions by comparing data from NASA's Gravity and Recovery Climate Experiment satellite system, or GRACE, with continuous GPS measurements made from long-term sites on bedrock on the edges of the ice sheet.

The data from the GPS and GRACE provided the researchers with monthly averages of crustal uplift caused by ice-mass loss. The team combined the uplift measured by GRACE over United Kingdom-sized chunks of Greenland while the GPS receivers monitor crustal uplift on scales of just tens of miles. "Our results show that the ice loss, which has been well documented over southern portions of Greenland, is now spreading up along the northwest coast," said Shfaqat Abbas Khan, lead author on a paper that will appear in Geophysical Research Letters.

The team found that uplift rates near the Thule Air Base on Greenland's northwest coast rose by roughly 1.5 inches, or about 4 centimeters, from October 2005 to August 2009. Although the low resolution of GRACE -- a swath of about 155 miles, or 250 kilometers across -- is not precise enough to pinpoint the source of the ice loss, the fact that the ice sheet is losing mass nearer to the ice sheet margins suggests the flows of Greenland outlet glaciers there are increasing in velocity, said the study authors.

"When we look at the monthly values from GRACE, the ice mass loss has been very dramatic along the northwest coast of Greenland," said CU-Boulder physics Professor and study co-author John Wahr, also a fellow at CU-Boulder's Cooperative Institute for Research in Environmental Sciences.

"This is a phenomenon that was undocumented before this study," said Wahr. "Our speculation is that some of the big glaciers in this region are sliding downhill faster and dumping more ice in the ocean."

Other co-authors on the new GRL study included Michael Bevis and Eric Kendrick from Ohio State University and Isabella Velicogna of the University of California-Irvine, who also is a scientist at NASA's Jet Propulsion Laboratory. GRL is published by the American Geophysical Union.

A 2009 study published in GRL by Velicogna, who is a former CU-Boulder research scientist, showed that between April 2002 and February 2009, the Greenland ice sheet shed roughly 385 cubic miles of ice. The mass loss is equivalent to about 0.5 millimeters of global sea-level rise per year.

"These changes on the Greenland ice sheet are happening fast, and we are definitely losing more ice mass than we had anticipated, " said Velicogna. "We also are seeing this ice mass loss trend in Antarctica, a sign that warming temperatures really are having an effect on ice in Earth's cold regions."

Researchers have been gathering data from GRACE since NASA launched the system in 2002. Two GRACE satellites whip around Earth 16 times a day separated by 137 miles and measure changes in Earth's gravity field caused by regional shifts in the planet's mass, including ice sheets, oceans and water stored in the soil and in underground aquifers.

"GRACE is unique in that it allows us to see changes in the ice mass in almost real time," said Velicogna. "Combining GRACE data with the separate signals from GPS stations gives us a very powerful tool that improves our resolution and allows us to better understand the changes that are occurring."

In addition to monitoring the Thule GPS receiver in northwest Greenland as part of the new GRL study, the team also is taking data from GPS receivers in southern Greenland near the towns of Kellyville and Kulusuk. An additional 51 permanent GPS stations recently set up around the edges of the Greenland ice sheet should be useful to measure future crustal uplift and corresponding ice loss, said Wahr.

"If this activity in northwest Greenland continues and really accelerates some of the major glaciers in the area -- like the Humboldt Glacier and the Peterman Glacier -- Greenland's total ice loss could easily be increased by an additional 50 to 100 cubic kilometers (12 to 24 cubic miles) within a few years," said Khan.

The study was funded by NASA and the National Science Foundation.

Greenland is about one-fourth the size of the United States and the massive ice sheet covers about 80 percent of its surface. It holds about 20 percent of the world's ice, the equivalent of about 21 feet of global sea rise. Air temperatures over the Greenland ice sheet have increased by about 4 degrees Fahrenheit since 1991, which most scientists attribute to a build-up of greenhouse gases in the atmosphere.

A 2006 study by Wahr and Velicogna using the GRACE satellite indicated that Greenland lost roughly 164 cubic miles of ice from April 2004 to April 2006 -- more than the volume of water in Lake Erie.

To view a video animation of Greenland's northwest coastline ice loss from 2003 to 2009 produced by CU-Boulder's Wahr, visit and click on the Greenland ice sheet story. To view animation of the GRACE mission visit

John Wahr | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>