Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet losing mass on northwest coast

24.03.2010
Ice loss from the Greenland ice sheet, which has been increasing during the past decade over its southern region, is now moving up its northwest coast, according to a new international study.

Led by the Denmark Technical Institute's National Space Institute in Copenhagen and involving the University of Colorado at Boulder, the study indicated the ice-loss acceleration began moving up the northwest coast of Greenland starting in late 2005.

The team drew their conclusions by comparing data from NASA's Gravity and Recovery Climate Experiment satellite system, or GRACE, with continuous GPS measurements made from long-term sites on bedrock on the edges of the ice sheet.

The data from the GPS and GRACE provided the researchers with monthly averages of crustal uplift caused by ice-mass loss. The team combined the uplift measured by GRACE over United Kingdom-sized chunks of Greenland while the GPS receivers monitor crustal uplift on scales of just tens of miles. "Our results show that the ice loss, which has been well documented over southern portions of Greenland, is now spreading up along the northwest coast," said Shfaqat Abbas Khan, lead author on a paper that will appear in Geophysical Research Letters.

The team found that uplift rates near the Thule Air Base on Greenland's northwest coast rose by roughly 1.5 inches, or about 4 centimeters, from October 2005 to August 2009. Although the low resolution of GRACE -- a swath of about 155 miles, or 250 kilometers across -- is not precise enough to pinpoint the source of the ice loss, the fact that the ice sheet is losing mass nearer to the ice sheet margins suggests the flows of Greenland outlet glaciers there are increasing in velocity, said the study authors.

"When we look at the monthly values from GRACE, the ice mass loss has been very dramatic along the northwest coast of Greenland," said CU-Boulder physics Professor and study co-author John Wahr, also a fellow at CU-Boulder's Cooperative Institute for Research in Environmental Sciences.

"This is a phenomenon that was undocumented before this study," said Wahr. "Our speculation is that some of the big glaciers in this region are sliding downhill faster and dumping more ice in the ocean."

Other co-authors on the new GRL study included Michael Bevis and Eric Kendrick from Ohio State University and Isabella Velicogna of the University of California-Irvine, who also is a scientist at NASA's Jet Propulsion Laboratory. GRL is published by the American Geophysical Union.

A 2009 study published in GRL by Velicogna, who is a former CU-Boulder research scientist, showed that between April 2002 and February 2009, the Greenland ice sheet shed roughly 385 cubic miles of ice. The mass loss is equivalent to about 0.5 millimeters of global sea-level rise per year.

"These changes on the Greenland ice sheet are happening fast, and we are definitely losing more ice mass than we had anticipated, " said Velicogna. "We also are seeing this ice mass loss trend in Antarctica, a sign that warming temperatures really are having an effect on ice in Earth's cold regions."

Researchers have been gathering data from GRACE since NASA launched the system in 2002. Two GRACE satellites whip around Earth 16 times a day separated by 137 miles and measure changes in Earth's gravity field caused by regional shifts in the planet's mass, including ice sheets, oceans and water stored in the soil and in underground aquifers.

"GRACE is unique in that it allows us to see changes in the ice mass in almost real time," said Velicogna. "Combining GRACE data with the separate signals from GPS stations gives us a very powerful tool that improves our resolution and allows us to better understand the changes that are occurring."

In addition to monitoring the Thule GPS receiver in northwest Greenland as part of the new GRL study, the team also is taking data from GPS receivers in southern Greenland near the towns of Kellyville and Kulusuk. An additional 51 permanent GPS stations recently set up around the edges of the Greenland ice sheet should be useful to measure future crustal uplift and corresponding ice loss, said Wahr.

"If this activity in northwest Greenland continues and really accelerates some of the major glaciers in the area -- like the Humboldt Glacier and the Peterman Glacier -- Greenland's total ice loss could easily be increased by an additional 50 to 100 cubic kilometers (12 to 24 cubic miles) within a few years," said Khan.

The study was funded by NASA and the National Science Foundation.

Greenland is about one-fourth the size of the United States and the massive ice sheet covers about 80 percent of its surface. It holds about 20 percent of the world's ice, the equivalent of about 21 feet of global sea rise. Air temperatures over the Greenland ice sheet have increased by about 4 degrees Fahrenheit since 1991, which most scientists attribute to a build-up of greenhouse gases in the atmosphere.

A 2006 study by Wahr and Velicogna using the GRACE satellite indicated that Greenland lost roughly 164 cubic miles of ice from April 2004 to April 2006 -- more than the volume of water in Lake Erie.

To view a video animation of Greenland's northwest coastline ice loss from 2003 to 2009 produced by CU-Boulder's Wahr, visit http://www.colorado.edu/news and click on the Greenland ice sheet story. To view animation of the GRACE mission visit http://www.csr.utexas.edu/grace/gallery/animations/.

John Wahr | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>