Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenland ice sheet flow driven by short-term weather extremes, not gradual warming

Sudden changes in the volume of meltwater contribute more to the acceleration – and eventual loss – of the Greenland ice sheet than the gradual increase of temperature, according to a University of British Columbia study.

The ice sheet consists of layers of compressed snow and covers roughly 80 per cent of the surface of Greenland. Since the 1990s, it has been documented to be losing approximately 100 billion tonnes of ice per year – a process that most scientists agree is accelerating, but has been poorly understood. Some of the loss has been attributed to accelerated glacier flow towards ocean outlets.

Now a new study, to be published tomorrow in the journal Nature, shows that a steady meltwater supply from gradual warming may in fact slow down glacier flow, while sudden water input could cause glaciers to speed up and spread, resulting in increased melt.

“The conventional view has been that meltwater permeates the ice from the surface and pools under the base of the ice sheet,” says Christian Schoof, an assistant professor at UBC’s Department of Earth and Ocean Sciences and the study’s author. “This water then serves as a lubricant between the glacier and the earth underneath it, allowing the glacier to shift to lower, warmer altitudes where more melt would occur.”

Noting observations that during heavy rainfall, higher water pressure is required to force drainage along the base of the ice, Schoof created computer models that account for the complex fluid dynamics occurring at the interface of glacier and bedrock. He found that a steady supply of meltwater is well accommodated and drained through water channels that form under the glacier.

“Sudden water input caused by short term extremes – such as massive rain storms or the draining of a surface lake – however, cannot easily be accommodated by existing channels. This allows it to pool and lubricate the bottom of the glaciers and accelerate ice loss,” says Schoof, who holds a Canada Research Chair in Global Process Modeling.

“This certainly doesn’t mitigate the issue of global warming, but it does mean that we need to expand our understanding of what’s behind the massive ice loss we’re worried about,” says Schoof.

A steady increase of temperature and short-term extreme weather conditions have both been attributed to global climate change. According to the European Environment Agency, ice loss from the Greenland ice sheet has contributed to global sea-level rise at 0.14 to 0.28 millimetres per year between 1993 and 2003.

“This study provides an elegant solution to one of the two key ice sheet instability problems identified by the Intergovernmental Panel on Climate Change in their 2007 assessment report,” says Prof. Andrew Shepherd, an expert on using satellites to study physical processes of Earth’s climate, based at the University of Leeds, the U.K.

“It turns out that, contrary to popular belief, Greenland ice sheet flow might not be accelerated by increased melting after all,” says Shepherd, who was not involved in the research or peer review of the paper.

The research was supported by the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Foundation for Climate and Atmospheric Sciences through the Polar Climate Stability Network.

Brian Lin | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>