Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet flow driven by short-term weather extremes, not gradual warming

09.12.2010
Sudden changes in the volume of meltwater contribute more to the acceleration – and eventual loss – of the Greenland ice sheet than the gradual increase of temperature, according to a University of British Columbia study.

The ice sheet consists of layers of compressed snow and covers roughly 80 per cent of the surface of Greenland. Since the 1990s, it has been documented to be losing approximately 100 billion tonnes of ice per year – a process that most scientists agree is accelerating, but has been poorly understood. Some of the loss has been attributed to accelerated glacier flow towards ocean outlets.

Now a new study, to be published tomorrow in the journal Nature, shows that a steady meltwater supply from gradual warming may in fact slow down glacier flow, while sudden water input could cause glaciers to speed up and spread, resulting in increased melt.

“The conventional view has been that meltwater permeates the ice from the surface and pools under the base of the ice sheet,” says Christian Schoof, an assistant professor at UBC’s Department of Earth and Ocean Sciences and the study’s author. “This water then serves as a lubricant between the glacier and the earth underneath it, allowing the glacier to shift to lower, warmer altitudes where more melt would occur.”

Noting observations that during heavy rainfall, higher water pressure is required to force drainage along the base of the ice, Schoof created computer models that account for the complex fluid dynamics occurring at the interface of glacier and bedrock. He found that a steady supply of meltwater is well accommodated and drained through water channels that form under the glacier.

“Sudden water input caused by short term extremes – such as massive rain storms or the draining of a surface lake – however, cannot easily be accommodated by existing channels. This allows it to pool and lubricate the bottom of the glaciers and accelerate ice loss,” says Schoof, who holds a Canada Research Chair in Global Process Modeling.

“This certainly doesn’t mitigate the issue of global warming, but it does mean that we need to expand our understanding of what’s behind the massive ice loss we’re worried about,” says Schoof.

A steady increase of temperature and short-term extreme weather conditions have both been attributed to global climate change. According to the European Environment Agency, ice loss from the Greenland ice sheet has contributed to global sea-level rise at 0.14 to 0.28 millimetres per year between 1993 and 2003.

“This study provides an elegant solution to one of the two key ice sheet instability problems identified by the Intergovernmental Panel on Climate Change in their 2007 assessment report,” says Prof. Andrew Shepherd, an expert on using satellites to study physical processes of Earth’s climate, based at the University of Leeds, the U.K.

“It turns out that, contrary to popular belief, Greenland ice sheet flow might not be accelerated by increased melting after all,” says Shepherd, who was not involved in the research or peer review of the paper.

The research was supported by the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Foundation for Climate and Atmospheric Sciences through the Polar Climate Stability Network.

Brian Lin | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>