Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenland ice sheet carries evidence of increased atmospheric acidity

10.12.2012
Research has shown a decrease in levels of the isotope nitrogen-15 in core samples from Greenland ice starting around the time of the Industrial Revolution. The decrease has been attributed to a corresponding increase in nitrates associated with the burning of fossil fuels.
However, new University of Washington research suggests that the decline in nitrogen-15 is more directly related to increased acidity in the atmosphere.

The increased acidity can be traced to sulfur dioxide, which in the atmosphere is transformed to sulfuric acid, said Lei Geng, a UW research associate in atmospheric sciences. Following the Industrial Revolution, sulfur dioxide emissions increased steadily because of coal burning.

“It changes the chemical properties of the lower troposphere, where we live, and that can have a lot of consequences,” Geng said. He presented his findings Friday (Dec. 7) at the fall meeting of the American Geophysical Union in San Francisco.

The gradual buildup of acidity in the atmosphere over a century got a boost around 1950 with a sharp increase in nitrogen-oxygen compounds, referred to as NOx, mainly produced in high-temperature combustion such as occurs in coal-fired power plants and motor vehicle engines. NOx is easily converted to nitric acid in the atmosphere, further increasing the acidity.

NOx carries a chemical signature – the abundance of nitrogen-15, one of two nitrogen isotopes – which changes depending on the source. That means it is possible to distinguish NOx that came from a forest fire from NOx produced as a result of lightning, soil emissions, car exhaust and power plant emissions. The level of nitrogen-15 can be measured in nitrates that formed from NOx and were deposited in ice sheets such as those in Greenland.

Current evidence indicates NOx from coal-fired power plant and motor vehicle emissions likely carries more nitrogen-15 than NOx produced by natural sources, so nitrogen-15 levels in deposited nitrate could be expected to go up. However, those levels actually went down in the late 1800s, following the Industrial Revolution, Geng said. That’s because increasing sulfuric acid levels in the atmosphere triggered chemical and physical processes that allowed less nitrogen-15 to remain in vaporized nitrate, which can be carried to remote places such as Greenland.

The growing acidity in the atmosphere was occurring decades before acid rain was recognized as a threat, particularly in industrial areas of North America.

Core samples from Greenland ice sheets reflect a correlation between nitrogen-15 levels and atmospheric acidity, Geng said. Data he studied came primarily from a core that is part of combined research between UW and South Dakota State University, funded by the National Science Foundation.

Geng noted that the core reflects a decline in signals for both NOx and sulfur dioxide emissions in the 1930s, during the Great Depression. The signals increased again following the Depression until the early 1970s, when Western nations experienced an economic downturn and an oil shortage. Shortly after that, the Clean Air Act in the United States began to have an impact on vehicle and power plant emissions.

“We’ve seen a huge drop in sulfate concentrations since the late 1970s,” Geng said. “By 2005, concentrations had dropped to levels similar to the late 1800s.”

Ice core data show nitrate levels have stabilized during that time, he said, because while emission levels from individual vehicles might have decreased substantially, the number of vehicles has increased significantly.

For more information, contact Geng at 206-543-4596 or leigeng@uw.edu.

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>