Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenland's Glaciers Losing Ice Faster This Year than Last

Researchers watching the loss of ice flowing out from the giant island of Greenland say that the amount of ice lost this summer is nearly three times what was lost one year ago. The loss of floating ice in 2008 pouring from Greenland’s glaciers would cover an area twice the size of Manhattan Island in the U.S., they said.

Researchers watching the loss of ice flowing out from the giant island of Greenland say that the amount of ice lost this summer is nearly three times what was lost one year ago.

The loss of floating ice in 2008 pouring from Greenland’s glaciers would cover an area twice the size of Manhattan Island in the U.S., they said.

Jason Box, an associate professor of geography at Ohio State, said that the loss of ice since the year 2000 is 355.4 square miles (920.5 square kilometers), or more than 10 times the size of Manhattan.

“We now know that the climate doesn’t have to warm any more for Greenland to continue losing ice,” Box said. “It has probably passed the point where it could maintain the mass of ice that we remember.

“But that doesn’t mean that Greenland’s ice will all disappear. It’s likely that it will probably adjust to a new ‘equilibrium’ but before it reaches the equilibrium, it will shed a lot more ice.

“Greenland is deglaciating and actually has been doing so for most of the past half-century.”

Box, a researcher with Ohio State’s Byrd Polar Research Center, along with graduate students Russell Benson and David Decker, presented their findings at the annual meeting of the American Geophysical Union in San Francisco.

The research team has been monitoring satellite images of Greenland to gauge just how much ice flows from landlocked glaciers towards the ocean to form floating ice shelves. Eventually, large pieces of these ice shelves will break off into the sea, speeding up the flow of more glacial ice to add to the shelves.

Warming of the climate around Greenland is believed to have added to the increased flow of ice outward from the mainland via these huge glaciers.

Using daily images from instruments called MODIS (Moderate Resolution Imaging Spectroradiometer) aboard two of NASA’s satellites, Box and his team are able to monitor changes in 32 of the largest glaciers along Greenland’s coast.

They determined that during the summer of 2006-2007, the floating ice shelves at the seaward end of those glaciers had diminished by 24.29 square miles (62.9 square kilometers). But one year later -- the summer of 2007-2008 – the ice loss had nearly tripled to nearly 71 square miles (183.8 square kilometers). Much of this additional loss is from a single large floating ice tongue called the Petermann Glacier.

Late this summer, the Ohio State researchers were able to watch as a massive 11-square-mile (29-square kilometer) chunk broke off from the tongue of the massive Petermann Glacier in Northern Greenland. At the time, they also noted that a massive crack further up the ice shelf suggested an even larger piece of ice would soon crack off.

Box said that some findings may have confused the public’s views of what is happening around Greenland. “For example, we know that snowfall rates have increased recently in this region,” he said, “but that hasn’t been enough to compensate for the increased melt rate of the ice that we’re seeing now.”

Their research is supported in part by the National Science Foundation and the National Aeronautics and Space Administration.

Contact: Jason Box, (614) 247-6899;

Earle Holland | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>