Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greening of the Earth pushed way back in time

23.07.2013
Researchers say a newly named South African fossil points to rising oxygen and life 2.2 billion years ago

Conventional scientific wisdom has it that plants and other creatures have only lived on land for about 500 million years, and that landscapes of the early Earth were as barren as Mars.


This is an interpretive view of Diskagma buttonii with exterior view, left, and cross section. The fossils are the size of match heads and were found connected into bunches by threads in the surface of an ancient soil from South Africa.

Credit: Courtesy of Gregory Retallack

A new study, led by geologist Gregory J. Retallack of the University of Oregon, now has presented evidence for life on land that is four times as old -- at 2.2 billion years ago and almost half way back to the inception of the planet.

That evidence, which is detailed in the September issue of the journal Precambrian Research, involves fossils the size of match heads and connected into bunches by threads in the surface of an ancient soil from South Africa. They have been named Diskagma buttonii, meaning "disc-shaped fragments of Andy Button," but it is unsure what the fossils were, the authors say.

"They certainly were not plants or animals, but something rather more simple," said Retallack, professor of geological sciences and co-director of paleontological collections at the UO's Museum of Natural and Cultural History. The fossils, he added, most resemble modern soil organisms called Geosiphon, a fungus with a central cavity filled with symbiotic cyanobacteria.

"There is independent evidence for cyanobacteria, but not fungi, of the same geological age, and these new fossils set a new and earlier benchmark for the greening of the land," he said. "This gains added significance because fossil soils hosting the fossils have long been taken as evidence for a marked rise in the amount of oxygen in the atmosphere at about 2.4 billion to 2.2 billion years ago, widely called the Great Oxidation Event."

By modern standards, in which Earth's air is now 21 percent oxygen, this early rise was modest, to about 5 percent oxygen, but it represented a rise from vanishingly low oxygen levels earlier in geological time.

Demonstrating that Diskagma are fossils, Retallack said, was a technical triumph because they were too big to be completely seen in a standard microscopic slide and within rock that was too dark to see through in slabs. The samples were imaged using powerful X-rays of a cyclotron, a particle accelerator, at the Lawrence Berkeley National Laboratory in California.

The images enabled a three-dimensional restoration of the fossils' form: odd little hollow urn-shaped structures with a terminal cup and basal attachment tube. "At last we have an idea of what life on land looked like in the Precambrian," Retallack said. "Perhaps with this search image in mind, we can find more and different kinds of fossils in ancient soils."

In their conclusion, the researchers noted that their newly named fossil Diskagma is comparable in morphology and size to Thucomyces lichenoides, a fossil dating to 2.8 billion years ago and also found in South Africa, but its composition, including interior structure and trace elements, is significantly different.

Diskagma also holds some similarities to three living organisms, which were illustrated microscopically in the study: the slime mold Leocarpus fragilis as found in Oregon's Three Sisters Wilderness; the lichen Cladonia ecmocyna gathered near Fishtrap Lake in Montana; and the fungus Geosiphon pyriformis from near Darmstadt, Germany.

The new fossil, the authors concluded, is a promising candidate for the oldest known eukaryote --an organism with cells that contain complex structures, including a nucleus, within membranes.

"Researchers at the UO are collaborating with scientists from around the world to create new knowledge with far-reaching applications," said Kimberly Andrews Espy, UO vice president for research and innovation, and dean of the graduate school. "This research by Dr. Retallack and his team opens new doors of inquiry about the origins of ancient life on Earth."

The three co-authors with Retallack on the study were: Evelyn S. Krull of the Land and Water Division of the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia's national science agency; Glenn D. Thackray, professor of geology at Idaho State University; and Dula Parkinson of the Lawrence Berkeley National Laboratory.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

SOURCE: Gregory J. Retallack, professor of geological sciences, 541-346-4558, gregr@uoregon.edu

Links:

Retallack faculty page: http://pages.uoregon.edu/dogsci/doku.php?id=directory/faculty/greg/about

Department of Geological Sciences: http://pages.uoregon.edu/dogsci/doku.php

Museum of Natural and Cultural History: http://natural-history.uoregon.edu/

Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

UO Science on Twitter: http://twitter.com/UO_Research

More UO Science/Research News: http://uoresearch.uoregon.edu

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>