Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse Ocean Study Offers Warning for Future

18.05.2011
The mass extinction of marine life in our oceans during prehistoric times is a warning that the Earth will see such an extinction again because of high levels of greenhouse gases, according to new research by geologists.

Professor Martin Kennedy from the University of Adelaide (School of Earth & Environmental Sciences) and Professor Thomas Wagner from Newcastle University (Civil Engineering and Geosciences) have been studying 'greenhouse oceans' – oceans that have been depleted of oxygen and suffered from increases in carbon dioxide and temperature.

Using core samples drilled from the ocean bed off the coast of western Africa, the researchers studied layers of sediment from the Late Cretaceous Period (85 million years ago) across a 400,000-year timespan. They found a significant amount of organic material – marine life – buried within deoxygenated layers of the sediment.

"Our research points to a mass mortality in the oceans at a time when the Earth was going through a greenhouse effect, with high levels of carbon dioxide in the atmosphere, and rising temperatures, leading to a severe lack of oxygen (hypoxia) in the water that marine animals are dependent on," Professor Kennedy says.

"What's alarming to us as scientists is that there were only very slight natural changes that resulted in the onset of hypoxia in the deep ocean. This occurred relatively rapidly – in periods of hundreds of years, or possibly even less – not gradually over longer, geological time scales, which suggests that the Earth's oceans are in a much more delicate balance during greenhouse conditions than originally thought, and may respond in a more abrupt fashion to even subtle changes in temperature and CO2 levels than previously thought."

Professor Wagner says the results of their research, published in the Proceedings of the National Academy of Sciences (PNAS), have relevance for our modern world: "We know that 'dead zones' are rapidly growing in size and number in seas and oceans across the globe. These are areas of water that are lacking in oxygen and are suffering from increases of CO2, rising temperatures, nutrient run-off from agriculture and other factors."

Professor Kennedy says: "If you consider that the amount of carbon dioxide in our atmosphere has doubled over the past 50 years, this is like hitting our ecosystem with a sledge-hammer compared to the very small changes in incoming solar energy (radiation) which was capable of triggering these events in the past. This could have a catastrophic, profound impact on the sustainability of life in our oceans, which in turn is likely to impact on the sustainability of life for many land-based species, including humankind."

Professor Kennedy says the geological record offers a glimmer of hope thanks to a naturally occurring response to greenhouse conditions.

"After a hypoxic phase, oxygen concentration in the ocean seems to improve, and marine life returns. Our results show that natural processes of carbon burial kick in. Importantly, this rescue comes from the land, with soil-formed minerals acting to collect and bury excess dissolved organic matter in seawater. Burial of that excess carbon ultimately contributes to CO2 removal from the atmosphere, cooling the planet and the ocean.

"This is nature's solution to the greenhouse effect and it could offer a possible solution for us. If we are able to learn more about this effect and its feedbacks, we may be able to manage it, and reduce the present rate of warming threatening our oceans."

Media contacts:

Professor Martin Kennedy
Discipline of Geology & Geophysics
School of Earth & Environmental Sciences
The University of Adelaide
Phone: +61 8 8303 5378
Cell phone: +61 428 002 556
martin.kennedy@adelaide.edu.au
Professor Thomas Wagner
Professor of Earth System Science
Civil Engineering and Geosciences
Newcastle University
Phone: +44 (0) 191 222 7893
thomas.wagner@ncl.ac.uk
Louella Houldcroft
Media Relations Manager
Newcastle University, UK
Phone: +44 191 222 5108
Cell phone: +44 7989 850 511
press.office@ncl.ac.uk
David Ellis
Media Officer
The University of Adelaide
Phone: +61 8 8303 5414
Cell phone: +61 421 612 762
david.ellis@adelaide.edu.au

David Ellis | Newswise Science News
Further information:
http://www.adelaide.edu.au
http://www.ncl.ac.uk

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>