Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From greenhouse to icehouse -- reconstructing the environment of the Voring Plateau

16.12.2009
The environment of the Voring Plateau

The analysis of microfossils found in ocean sediment cores is illuminating the environmental conditions that prevailed at high latitudes during a critical period of Earth history.

Around 55 million years ago at the beginning of the Eocene epoch, the Earth's poles are believed to have been free of ice. But by the early Oligocene around 25 million years later, ice sheets covered Antarctica and continental ice had developed on Greenland.

"This change from greenhouse to icehouse conditions resulted from decreasing greenhouse gas concentrations and changes in Earth's orbit," said Dr Ian Harding of the University of Southampton's School of Ocean and Earth Science (SOES) at the National Oceanography Centre, Southampton (NOCS): "However, the opening or closing of various marine gateways and shifts in ocean currents may also have influenced regional climate in polar high-latitudes."

The separation of Eurasia and Greenland due to shifting tectonic plates led to the partial or complete submergence of former land barriers such as the Vøring Plateau of the Norwegian continental margin. For the first time, waters could exchange between the Norwegian–Greenland Sea, the Arctic Ocean and the North Atlantic.

Dr Harding and his former PhD student Dr James Eldrett have reconstructed the environmental conditions over the Vøring Plateau over this time period by carefully analysing the fossilised remains of organic debris and cysts of tiny aquatic organisms called dinoflagellates from sediment cores.

"Because different dinoflagellate species are adapted to different surface water conditions, their fossilised remains help us reconstruct past environments," said Dr Harding.

The evidence from the sediments cores suggests the development of shallow marine environments across parts of the Vøring Plateau during the early Eocene. However, the presence of fossilised species that lived in fresh or brackish water indicates that northerly parts of the plateau as well as the crest of the Vøring Escarpment were still above water.

In the late Eocene sediments (around 44 million years old) only marine plankton species were found, indicating that the entire Vøring Plateau had by then subsided and become submerged. This demonstrates that marine connections were established between the various Nordic sea basins much earlier than had previously been thought. These surface water connections may have promoted the increased surface water productivity evidenced by the abundance of planktonic fossils preserved in the sediment cores of this age.

"Increased productivity would have drawn carbon dioxide down from the atmosphere," said Dr Harding: "Because carbon dioxide is a greenhouse gas, this may have contributed to declining global temperatures and led to the early development of continental ice on Greenland in the latest Eocene."

Contact information:

For more information contact the NOCS Press Officer Dr Rory Howlett on +44 (0)23 8059 8490 Email: r.howlett@noc.soton.ac.uk

Scientist contact

Dr Ian Harding: email ich@noc.soton.ac.uk; telephone +44 (0) 23 8059 2071

Publication: Eldrett, J. S. & Harding, I. C. Palynological analyses of Eocene to Oligocene sediments from DSDP Site 338, Outer Vøring Plateau. Marine Micropaleontology 73, 226-240 (2009).

Notes:

The research used samples provided by the Ocean Drilling Program and was funded by the American Association of Stratigraphic Palynologists, The Geological Society of London, The Micropalaeontological Society and the Natural Environment Research Council. Co-author Dr James Eldrett was awarded his doctorate by the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre. He is now at Shell Exploration and Production Ltd.

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and Earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>