Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New greenhouse gas identified

13.03.2009
Early detection may permit 'nipping it in the bud'

A gas used for fumigation has the potential to contribute significantly to future greenhouse warming, but because its production has not yet reached high levels there is still time to nip this potential contributor in the bud, according to an international team of researchers.

Scientists at MIT, the Scripps Institution of Oceanography in San Diego and other institutions are reporting the results of their study of the gas, sulfuryl fluoride, this month in the Journal of Geophysical Research. The researchers have measured the levels of the gas in the atmosphere, and determined its emissions and lifetime to help gauge its potential future effects on climate.

Sulfuryl fluoride was introduced as a replacement for methyl bromide, a widely used fumigant that is being phased out under the Montreal Protocol because of its ozone-destroying chemistry. Methyl bromide has been widely used for insect control in grain-storage facilities, and in intensive agriculture in arid lands where drip irrigation is combined with covering of the land with plastic sheets to control evaporation.

"Such fumigants are very important for controlling pests in the agricultural and building sectors," says Ron Prinn, director of MIT's Center for Global Change Science and a co-author on the new paper. But with methyl bromide being phased out, "industry had to find alternatives, so sulfuryl fluoride has evolved to fill the role," he says.

Until the new work, nobody knew accurately how long the gas would last in the atmosphere after it leaked out of buildings or grain silos. "Our analysis has shown that the lifetime is about 36 years, or eight times greater than previously thought, with the ocean being its dominant sink," Prinn says. So it would become "a greenhouse gas of some importance if the quantity of its use grows as people expect." For now, the gas is only present in the atmosphere in very small quantities of about 1.5 parts per trillion, though it is increasing by about 5 percent per year. Its newly reported 36-year lifetime, along with studies of its infrared-absorbing properties by researchers at NOAA, "indicate that, ton for ton, it is about 4,800 times more potent a heat-trapping gas than carbon dioxide" says Prinn.

Fortunately, though, "we've caught it very early in the game," says Prinn, the TEPCO Professor of Atmospheric Science in MIT's Department of Earth, Atmospheric and Planetary Sciences. The detection was made through a NASA-sponsored global research program called the Advanced Global Atmospheric Gases Experiment (AGAGE). "In AGAGE, we don't just monitor the big greenhouse gases that everybody's heard of," he says. "This program is also designed to sniff out potential greenhouse and ozone-depleting gases before the industry gets very big."

The lead author of the research paper is Jens Mühle of Scripps, and besides Prinn, the co-authors include Jin Huang, a research scientist at MIT's Center for Global Change Science, Ray Weiss of Scripps, who co-directs AGAGE with Prinn, and eight others from Scripps, the University of Bristol in the United Kingdom and the Centre for Australian Weather and Climate Research.

"Unfortunately, it turns out that sulfuryl fluoride is a greenhouse gas with a longer lifetime than previously assumed," says Mühle. "This has to be taken into account before large amounts are emitted into the atmosphere."

Prinn adds that "fumigation is a big industry, and it's absolutely needed to preserve our buildings and food supply." But identifying the greenhouse risks from this particular compound, before many factories have been built to produce it in very large amounts, would give the industry a chance to find other substitutes at a time when that's still a relatively easy change to implement. "Given human inventiveness, there are surely other alternatives out there," says Prinn. He describes this approach as "a new frontier for environmental science -- to try to head off potential dangers as early as possible, rather than wait until it's a mature industry with lots of capital and jobs at stake."

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>