Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

If greenhouse gas emissions stopped now, Earth still would likely get warmer

16.02.2011
While governments debate about potential policies that might curb the emission of greenhouse gases, new University of Washington research shows that the world is already committed to a warmer climate because of emissions that have occurred up to now.

There would continue to be warming even if the most stringent policy proposals were adopted, because there still would be some emission of heat-trapping greenhouse gases such as carbon dioxide and methane. But the new research shows that even if all emissions were stopped now, temperatures would remain higher than pre-Industrial Revolution levels because the greenhouse gases already emitted are likely to persist in the atmosphere for thousands of years.

In fact, it is possible temperatures would continue to escalate even if all cars, heating and cooling systems and other sources of greenhouse gases were suddenly eliminated, said Kyle Armour, a UW doctoral student in physics. That's because tiny atmospheric particles called aerosols, which tend to counteract the effect of greenhouse warming by reflecting sunlight back into space, would last only a matter of weeks once emissions stopped, while the greenhouse gases would continue on.

"The aerosols would wash out quickly and then we would see an abrupt rise in temperatures over several decades," he said.

Armour is the lead author of a paper documenting the research, published recently in the journal Geophysical Research Letters. His co-author is Gerard Roe, a UW associate professor of Earth and space sciences.

The global temperature is already about 1.5 degrees Fahrenheit higher than it was before the Industrial Revolution, which began around the start of the 19th century. The scientists' calculations took into account the observed warming, as well as the known levels of greenhouse gases and aerosols already emitted to see what might happen if all emissions associated with industrialization suddenly stopped.

In the best-case scenario, the global temperature would actually decline, but it would remain about a half-degree F higher than pre-Industrial Revolution levels and probably would not drop to those levels again, Armour said.

There also is a possibility temperatures would rise to 3.5 degrees F higher than before the Industrial Revolution, a threshold at which climate scientists say significant climate-related damage begins to occur.

Of course it is not realistic to expect all emissions to cease suddenly, and Armour notes that the overall effect of aerosols – particles of sea salt or soot from burning fossil fuels, for example – is perhaps the largest uncertainty in climate research.

But uncertainties do not lessen the importance of the findings, he said. The scientists are confident, from the results of equations they used, that some warming would have to occur even if all emissions stopped now. But there are more uncertainties, and thus a lower confidence level, associated with larger temperature increases.

Climate models used in Intergovernmental Panel on Climate Change assessments take into consideration a much narrower range of the possible aerosol effects, or "forcings," than are supported by actual climate observations, Armour said. The Nobel Peace Prize-winning panel, sponsored by the United Nations, makes periodic assessments of climate change and is in the process of compiling its next report.

As emissions of greenhouse gases continue, the "climate commitment" to a warmer planet only goes up, Armour said. He believes it is helpful for policy makers to understand that level of commitment. It also will be helpful for them to understand that, while some warming is assured, uncertainties in current climate observations – such as the full effect of aerosols – mean the warming could be greater than models suggest.

"This is not an argument to say we should keep emitting aerosols," he said. "It is an argument that we should be smart in how we stop emitting. And it's a call to action because we know the warming we are committed to from what we have emitted already and the longer we keep emitting the worse it gets."

The paper was published in the Jan. 15 edition of Geophysical Research Letters.

For more information, contact Armour at 858-610-3812 or karmour@uw.edu, or Roe at 206-697-3298 or gerard@ess.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>