Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Greenhouse-gas emissions raise extreme temperatures in China

Humans are responsible for increasingly warm daily minimum and maximum temperatures in China, new research suggests. The study is the first to directly link greenhouse gas emissions with warmer temperature extremes in a single country, rather than on a global scale, according to the paper's authors.

"There is a warming in extreme temperatures over China, and this warming cannot be explained by natural variation," said Qiuzi Han Wen, an author on this paper and a researcher at the Institute of Atmospheric Physics in Beijing, China.

A diminished water source near the village Shanqian in Yunnan-province, China. (Credit: Bert van Dijk)

"It can only be explained by the anthropogenic external forcings. These findings indicate very clearly that climate change is not just an abstract number for the globe; it is evident at regional scale."

The study was recently published in Geophysical Research Letters—a journal of the American Geophysical Union.

To identify the human influence on temperatures, researchers from Beijing and Toronto compared data from climate change models with actual observations from 2,400 weather stations in China gathered between 1961 and 2007.

"The climate model produces historical simulations to mimic what would have happened under different influences—such as human-induced greenhouse gas emissions and volcanic activities—and produces many possible outcomes"," said Xuebin Zhang, an author on the paper and a researcher in the Climate Research Division of Environment Canada in Toronto. "If we average these possible outcomes, the day-to-day weather noise cancels out, leaving us with a general trend."

The climate model reproduces China's present reality only if human emissions are included, indicating that global warming is indeed the culprit for China's warmer day and nighttime temperatures and not natural weather fluctuations, Zhang said.

"Actually seeing a warming trend in a single location is hard," Zhang said. "It's like trying to see the tide change when you're in a rowboat going up and down on the waves. You need a lot of data to distill the day-to-day weather noise from the general trend."

But the key to cracking the warming trend in China, Zhang said, was the vast amounts of data that the research team distilled from the thousands of weather stations, over more than four decades. The researchers estimate that human emissions likely increased the warmest annual extreme temperatures—the daily maximum and daily minimum for the hottest day and night of the year—by 1.7 degrees Fahrenheit (0.92 degrees Celsius) and 3°F (1.7°C), respectively. They also found that human emissions likely raised the coolest annual extreme temperatures—the daily maximum and daily minimum for the coldest day and night of the year—by 5.1°F (2.83°C) and 8.0°F (4.44°C), respectively.

In addition to calculating the overall trend, Wen, Zhang and their colleagues separated the effect of each anthropogenic input. Carbon dioxide emissions had the highest impact on warming, explaining 89 percent of the increase in the daily maximum temperatures and 95 percent of the daily minimum temperatures.

Wen asserts greenhouse gases already in the atmosphere will continue to affect China's climate for years to come, regardless of mitigation measures taken to reduce future emissions. "As a result, we expect warming in China will continue into the future, and consequently warming in extreme temperatures will also continue," Wen said. "This will have huge implications for China, as heat waves and drought have already become more and more of an issue in our country. We would expect more hardship for dry-land farming as water supply is already stressed, higher demand on energy for cooling, and increasing heat-induced health issues."

Zhang stresses that the results of this study highlight that climate change is an urgent issue for China and that warming is already taking a toll on the country.

"There are heat waves almost everywhere in China and we're seeing more droughts," Zhang said. "China is getting much warmer, and people are very concerned."

This study was funded by the National Basic Research Program of China and benefited from a collaboration between the Meteorological Service Canada and the China Meteorological Administration.

Notes for Journalists

Journalists and members of the public can download a PDF copy of this accepted article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Sarah Charley at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo


“Detecting human influence on extreme temperatures in China”
Qiuzi Han Wen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;Xuebin Zhang Climate Research Division, Environment Canada, Toronto, Ontario, Canada;Ying Xu National Climate Center, China Meteorological Administration, Beijing, China;Bin Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.

Contact information for the authors:

Qiuzi Han Wen, Email:

Xuebin Zhang, Email:, Phone: +1 (416) 739-4713

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>