Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse-gas emissions raise extreme temperatures in China

09.04.2013
Humans are responsible for increasingly warm daily minimum and maximum temperatures in China, new research suggests. The study is the first to directly link greenhouse gas emissions with warmer temperature extremes in a single country, rather than on a global scale, according to the paper's authors.

"There is a warming in extreme temperatures over China, and this warming cannot be explained by natural variation," said Qiuzi Han Wen, an author on this paper and a researcher at the Institute of Atmospheric Physics in Beijing, China.


A diminished water source near the village Shanqian in Yunnan-province, China. (Credit: Bert van Dijk)

"It can only be explained by the anthropogenic external forcings. These findings indicate very clearly that climate change is not just an abstract number for the globe; it is evident at regional scale."

The study was recently published in Geophysical Research Letters—a journal of the American Geophysical Union.

To identify the human influence on temperatures, researchers from Beijing and Toronto compared data from climate change models with actual observations from 2,400 weather stations in China gathered between 1961 and 2007.

"The climate model produces historical simulations to mimic what would have happened under different influences—such as human-induced greenhouse gas emissions and volcanic activities—and produces many possible outcomes"," said Xuebin Zhang, an author on the paper and a researcher in the Climate Research Division of Environment Canada in Toronto. "If we average these possible outcomes, the day-to-day weather noise cancels out, leaving us with a general trend."

The climate model reproduces China's present reality only if human emissions are included, indicating that global warming is indeed the culprit for China's warmer day and nighttime temperatures and not natural weather fluctuations, Zhang said.

"Actually seeing a warming trend in a single location is hard," Zhang said. "It's like trying to see the tide change when you're in a rowboat going up and down on the waves. You need a lot of data to distill the day-to-day weather noise from the general trend."

But the key to cracking the warming trend in China, Zhang said, was the vast amounts of data that the research team distilled from the thousands of weather stations, over more than four decades. The researchers estimate that human emissions likely increased the warmest annual extreme temperatures—the daily maximum and daily minimum for the hottest day and night of the year—by 1.7 degrees Fahrenheit (0.92 degrees Celsius) and 3°F (1.7°C), respectively. They also found that human emissions likely raised the coolest annual extreme temperatures—the daily maximum and daily minimum for the coldest day and night of the year—by 5.1°F (2.83°C) and 8.0°F (4.44°C), respectively.

In addition to calculating the overall trend, Wen, Zhang and their colleagues separated the effect of each anthropogenic input. Carbon dioxide emissions had the highest impact on warming, explaining 89 percent of the increase in the daily maximum temperatures and 95 percent of the daily minimum temperatures.

Wen asserts greenhouse gases already in the atmosphere will continue to affect China's climate for years to come, regardless of mitigation measures taken to reduce future emissions. "As a result, we expect warming in China will continue into the future, and consequently warming in extreme temperatures will also continue," Wen said. "This will have huge implications for China, as heat waves and drought have already become more and more of an issue in our country. We would expect more hardship for dry-land farming as water supply is already stressed, higher demand on energy for cooling, and increasing heat-induced health issues."

Zhang stresses that the results of this study highlight that climate change is an urgent issue for China and that warming is already taking a toll on the country.

"There are heat waves almost everywhere in China and we're seeing more droughts," Zhang said. "China is getting much warmer, and people are very concerned."

This study was funded by the National Basic Research Program of China and benefited from a collaboration between the Meteorological Service Canada and the China Meteorological Administration.

Notes for Journalists

Journalists and members of the public can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50285/abstract

Or, you may order a copy of the final paper by emailing your request to Sarah Charley at scharley@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo

Title:

“Detecting human influence on extreme temperatures in China”
Authors:
Qiuzi Han Wen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;Xuebin Zhang Climate Research Division, Environment Canada, Toronto, Ontario, Canada;Ying Xu National Climate Center, China Meteorological Administration, Beijing, China;Bin Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.

Contact information for the authors:

Qiuzi Han Wen, Email: qiuzi@lasg.iap.ac.cn

Xuebin Zhang, Email: xuebin.zhang@ec.gc.ca, Phone: +1 (416) 739-4713

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>