Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse-gas emissions raise extreme temperatures in China

09.04.2013
Humans are responsible for increasingly warm daily minimum and maximum temperatures in China, new research suggests. The study is the first to directly link greenhouse gas emissions with warmer temperature extremes in a single country, rather than on a global scale, according to the paper's authors.

"There is a warming in extreme temperatures over China, and this warming cannot be explained by natural variation," said Qiuzi Han Wen, an author on this paper and a researcher at the Institute of Atmospheric Physics in Beijing, China.


A diminished water source near the village Shanqian in Yunnan-province, China. (Credit: Bert van Dijk)

"It can only be explained by the anthropogenic external forcings. These findings indicate very clearly that climate change is not just an abstract number for the globe; it is evident at regional scale."

The study was recently published in Geophysical Research Letters—a journal of the American Geophysical Union.

To identify the human influence on temperatures, researchers from Beijing and Toronto compared data from climate change models with actual observations from 2,400 weather stations in China gathered between 1961 and 2007.

"The climate model produces historical simulations to mimic what would have happened under different influences—such as human-induced greenhouse gas emissions and volcanic activities—and produces many possible outcomes"," said Xuebin Zhang, an author on the paper and a researcher in the Climate Research Division of Environment Canada in Toronto. "If we average these possible outcomes, the day-to-day weather noise cancels out, leaving us with a general trend."

The climate model reproduces China's present reality only if human emissions are included, indicating that global warming is indeed the culprit for China's warmer day and nighttime temperatures and not natural weather fluctuations, Zhang said.

"Actually seeing a warming trend in a single location is hard," Zhang said. "It's like trying to see the tide change when you're in a rowboat going up and down on the waves. You need a lot of data to distill the day-to-day weather noise from the general trend."

But the key to cracking the warming trend in China, Zhang said, was the vast amounts of data that the research team distilled from the thousands of weather stations, over more than four decades. The researchers estimate that human emissions likely increased the warmest annual extreme temperatures—the daily maximum and daily minimum for the hottest day and night of the year—by 1.7 degrees Fahrenheit (0.92 degrees Celsius) and 3°F (1.7°C), respectively. They also found that human emissions likely raised the coolest annual extreme temperatures—the daily maximum and daily minimum for the coldest day and night of the year—by 5.1°F (2.83°C) and 8.0°F (4.44°C), respectively.

In addition to calculating the overall trend, Wen, Zhang and their colleagues separated the effect of each anthropogenic input. Carbon dioxide emissions had the highest impact on warming, explaining 89 percent of the increase in the daily maximum temperatures and 95 percent of the daily minimum temperatures.

Wen asserts greenhouse gases already in the atmosphere will continue to affect China's climate for years to come, regardless of mitigation measures taken to reduce future emissions. "As a result, we expect warming in China will continue into the future, and consequently warming in extreme temperatures will also continue," Wen said. "This will have huge implications for China, as heat waves and drought have already become more and more of an issue in our country. We would expect more hardship for dry-land farming as water supply is already stressed, higher demand on energy for cooling, and increasing heat-induced health issues."

Zhang stresses that the results of this study highlight that climate change is an urgent issue for China and that warming is already taking a toll on the country.

"There are heat waves almost everywhere in China and we're seeing more droughts," Zhang said. "China is getting much warmer, and people are very concerned."

This study was funded by the National Basic Research Program of China and benefited from a collaboration between the Meteorological Service Canada and the China Meteorological Administration.

Notes for Journalists

Journalists and members of the public can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50285/abstract

Or, you may order a copy of the final paper by emailing your request to Sarah Charley at scharley@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo

Title:

“Detecting human influence on extreme temperatures in China”
Authors:
Qiuzi Han Wen State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;Xuebin Zhang Climate Research Division, Environment Canada, Toronto, Ontario, Canada;Ying Xu National Climate Center, China Meteorological Administration, Beijing, China;Bin Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.

Contact information for the authors:

Qiuzi Han Wen, Email: qiuzi@lasg.iap.ac.cn

Xuebin Zhang, Email: xuebin.zhang@ec.gc.ca, Phone: +1 (416) 739-4713

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>