Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas emissions from freshwater higher than thought

16.12.2015

Do not underestimate the babbling brook. When it comes to greenhouse gases, these bucolic water bodies have the potential to create a lot of hot air.

According to a new analysis in the journal Ecological Monographs, by researchers at the University of Wisconsin-Madison and colleagues, the world's rivers and streams pump about 10 times more methane into our atmosphere than scientists estimated in previous studies. The new study also found that human activity seems to drive which streams are the biggest contributors.


Nick Gubbins, an undergraduate student who has worked in the Stanley lab, takes methane flux measurements in the field.

Credit: Luke Loken, UW-Madison Center for Limnology

"Scientists know that inland waters, like lakes and reservoirs, are big sources of methane," says Emily Stanley, a professor at the UW-Madison Center for Limnology and lead author of the paper. Yet accurately measuring emissions of methane from these sources has remained a challenge.

Like carbon dioxide, methane is a greenhouse gas that traps heat at the Earth's surface. It is less prevalent than carbon dioxide in the atmosphere but also more potent: A molecule of methane results in more warming than a molecule of carbon dioxide. Understanding how much methane is emitted into the atmosphere from all sources helps scientists account for the full global greenhouse gas budget, and take measures to mitigate its impact.

Rivers and streams haven't received much attention in accounting for that budget, Stanley says, because they don't take up much surface area on a global scale and, with respect to methane, didn't seem to be all that gassy. But over the years, measurements taken by Stanley and her lab members seemed to indicate these sources may produce more methane than scientists had previously known.

Together with other center researchers and scientists at the University of Winnipeg and the U.S. Geological Survey's LandCarbon Project, the team created a database of measured methane flux (the exchange of the gas between water and atmosphere) and methane concentrations measured in streams and rivers using data from 111 publications and three unpublished datasets.

The research team then used two different methods to calculate the best estimates of global methane emissions from the data. They found the emissions to be an order of magnitude higher than scientists had previously reported.

The result was "very surprising," Stanley says. "I thought maybe we'd be off by a factor of two, so I was taken aback by how much higher the estimate was."

The researchers pointed to one possible reason: Not every stream is identical. The analysis revealed noticeably higher methane emissions from streams and rivers in watersheds marked with heavy agriculture, urban development or the presence of dams. This suggests efforts to improve stream health may have the added benefit of reducing greenhouse gases.

"The fact that human activity in a watershed leads to high methane concentrations in those rivers and streams underscores yet another reason to pay attention to water quality," says Stanley. "On top of everything else, it adds to this climate problem, too."

Methane from freshwater is often a byproduct of bacterial metabolism, as they break down organic matter under low-oxygen conditions, like in the sediment at the bottom of a lake. As the climate warms, the contribution of greenhouse gases from natural sources likes rivers, streams and wetlands is expected to increase because higher temperatures accelerate this bacterial breakdown, releasing more carbon dioxide and methane.

The next step, says Stanley, is figuring out where all that methane comes from. Running rivers and streams are usually better aerated and full of oxygen, making all that methane a bit of a mystery. Is it coming from groundwater? Somewhere along a riverbank? At the bottom of the stream itself? For now, the babbling brook is keeping that information to itself.

###

Adam Hinterthuer (608) 890-2187, hinterthuer@wisc.edu

Media Contact

Emily Stanley
ehstanley@wisc.edu
608-213-3715

 @UWMadScience

http://www.wisc.edu 

Emily Stanley | EurekAlert!

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>