Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas emissions from freshwater higher than thought

16.12.2015

Do not underestimate the babbling brook. When it comes to greenhouse gases, these bucolic water bodies have the potential to create a lot of hot air.

According to a new analysis in the journal Ecological Monographs, by researchers at the University of Wisconsin-Madison and colleagues, the world's rivers and streams pump about 10 times more methane into our atmosphere than scientists estimated in previous studies. The new study also found that human activity seems to drive which streams are the biggest contributors.


Nick Gubbins, an undergraduate student who has worked in the Stanley lab, takes methane flux measurements in the field.

Credit: Luke Loken, UW-Madison Center for Limnology

"Scientists know that inland waters, like lakes and reservoirs, are big sources of methane," says Emily Stanley, a professor at the UW-Madison Center for Limnology and lead author of the paper. Yet accurately measuring emissions of methane from these sources has remained a challenge.

Like carbon dioxide, methane is a greenhouse gas that traps heat at the Earth's surface. It is less prevalent than carbon dioxide in the atmosphere but also more potent: A molecule of methane results in more warming than a molecule of carbon dioxide. Understanding how much methane is emitted into the atmosphere from all sources helps scientists account for the full global greenhouse gas budget, and take measures to mitigate its impact.

Rivers and streams haven't received much attention in accounting for that budget, Stanley says, because they don't take up much surface area on a global scale and, with respect to methane, didn't seem to be all that gassy. But over the years, measurements taken by Stanley and her lab members seemed to indicate these sources may produce more methane than scientists had previously known.

Together with other center researchers and scientists at the University of Winnipeg and the U.S. Geological Survey's LandCarbon Project, the team created a database of measured methane flux (the exchange of the gas between water and atmosphere) and methane concentrations measured in streams and rivers using data from 111 publications and three unpublished datasets.

The research team then used two different methods to calculate the best estimates of global methane emissions from the data. They found the emissions to be an order of magnitude higher than scientists had previously reported.

The result was "very surprising," Stanley says. "I thought maybe we'd be off by a factor of two, so I was taken aback by how much higher the estimate was."

The researchers pointed to one possible reason: Not every stream is identical. The analysis revealed noticeably higher methane emissions from streams and rivers in watersheds marked with heavy agriculture, urban development or the presence of dams. This suggests efforts to improve stream health may have the added benefit of reducing greenhouse gases.

"The fact that human activity in a watershed leads to high methane concentrations in those rivers and streams underscores yet another reason to pay attention to water quality," says Stanley. "On top of everything else, it adds to this climate problem, too."

Methane from freshwater is often a byproduct of bacterial metabolism, as they break down organic matter under low-oxygen conditions, like in the sediment at the bottom of a lake. As the climate warms, the contribution of greenhouse gases from natural sources likes rivers, streams and wetlands is expected to increase because higher temperatures accelerate this bacterial breakdown, releasing more carbon dioxide and methane.

The next step, says Stanley, is figuring out where all that methane comes from. Running rivers and streams are usually better aerated and full of oxygen, making all that methane a bit of a mystery. Is it coming from groundwater? Somewhere along a riverbank? At the bottom of the stream itself? For now, the babbling brook is keeping that information to itself.

###

Adam Hinterthuer (608) 890-2187, hinterthuer@wisc.edu

Media Contact

Emily Stanley
ehstanley@wisc.edu
608-213-3715

 @UWMadScience

http://www.wisc.edu 

Emily Stanley | EurekAlert!

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>