Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas emissions from freshwater higher than thought

16.12.2015

Do not underestimate the babbling brook. When it comes to greenhouse gases, these bucolic water bodies have the potential to create a lot of hot air.

According to a new analysis in the journal Ecological Monographs, by researchers at the University of Wisconsin-Madison and colleagues, the world's rivers and streams pump about 10 times more methane into our atmosphere than scientists estimated in previous studies. The new study also found that human activity seems to drive which streams are the biggest contributors.


Nick Gubbins, an undergraduate student who has worked in the Stanley lab, takes methane flux measurements in the field.

Credit: Luke Loken, UW-Madison Center for Limnology

"Scientists know that inland waters, like lakes and reservoirs, are big sources of methane," says Emily Stanley, a professor at the UW-Madison Center for Limnology and lead author of the paper. Yet accurately measuring emissions of methane from these sources has remained a challenge.

Like carbon dioxide, methane is a greenhouse gas that traps heat at the Earth's surface. It is less prevalent than carbon dioxide in the atmosphere but also more potent: A molecule of methane results in more warming than a molecule of carbon dioxide. Understanding how much methane is emitted into the atmosphere from all sources helps scientists account for the full global greenhouse gas budget, and take measures to mitigate its impact.

Rivers and streams haven't received much attention in accounting for that budget, Stanley says, because they don't take up much surface area on a global scale and, with respect to methane, didn't seem to be all that gassy. But over the years, measurements taken by Stanley and her lab members seemed to indicate these sources may produce more methane than scientists had previously known.

Together with other center researchers and scientists at the University of Winnipeg and the U.S. Geological Survey's LandCarbon Project, the team created a database of measured methane flux (the exchange of the gas between water and atmosphere) and methane concentrations measured in streams and rivers using data from 111 publications and three unpublished datasets.

The research team then used two different methods to calculate the best estimates of global methane emissions from the data. They found the emissions to be an order of magnitude higher than scientists had previously reported.

The result was "very surprising," Stanley says. "I thought maybe we'd be off by a factor of two, so I was taken aback by how much higher the estimate was."

The researchers pointed to one possible reason: Not every stream is identical. The analysis revealed noticeably higher methane emissions from streams and rivers in watersheds marked with heavy agriculture, urban development or the presence of dams. This suggests efforts to improve stream health may have the added benefit of reducing greenhouse gases.

"The fact that human activity in a watershed leads to high methane concentrations in those rivers and streams underscores yet another reason to pay attention to water quality," says Stanley. "On top of everything else, it adds to this climate problem, too."

Methane from freshwater is often a byproduct of bacterial metabolism, as they break down organic matter under low-oxygen conditions, like in the sediment at the bottom of a lake. As the climate warms, the contribution of greenhouse gases from natural sources likes rivers, streams and wetlands is expected to increase because higher temperatures accelerate this bacterial breakdown, releasing more carbon dioxide and methane.

The next step, says Stanley, is figuring out where all that methane comes from. Running rivers and streams are usually better aerated and full of oxygen, making all that methane a bit of a mystery. Is it coming from groundwater? Somewhere along a riverbank? At the bottom of the stream itself? For now, the babbling brook is keeping that information to itself.

###

Adam Hinterthuer (608) 890-2187, hinterthuer@wisc.edu

Media Contact

Emily Stanley
ehstanley@wisc.edu
608-213-3715

 @UWMadScience

http://www.wisc.edu 

Emily Stanley | EurekAlert!

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>