Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greenhouse gas emissions from freshwater higher than thought

16.12.2015

Do not underestimate the babbling brook. When it comes to greenhouse gases, these bucolic water bodies have the potential to create a lot of hot air.

According to a new analysis in the journal Ecological Monographs, by researchers at the University of Wisconsin-Madison and colleagues, the world's rivers and streams pump about 10 times more methane into our atmosphere than scientists estimated in previous studies. The new study also found that human activity seems to drive which streams are the biggest contributors.


Nick Gubbins, an undergraduate student who has worked in the Stanley lab, takes methane flux measurements in the field.

Credit: Luke Loken, UW-Madison Center for Limnology

"Scientists know that inland waters, like lakes and reservoirs, are big sources of methane," says Emily Stanley, a professor at the UW-Madison Center for Limnology and lead author of the paper. Yet accurately measuring emissions of methane from these sources has remained a challenge.

Like carbon dioxide, methane is a greenhouse gas that traps heat at the Earth's surface. It is less prevalent than carbon dioxide in the atmosphere but also more potent: A molecule of methane results in more warming than a molecule of carbon dioxide. Understanding how much methane is emitted into the atmosphere from all sources helps scientists account for the full global greenhouse gas budget, and take measures to mitigate its impact.

Rivers and streams haven't received much attention in accounting for that budget, Stanley says, because they don't take up much surface area on a global scale and, with respect to methane, didn't seem to be all that gassy. But over the years, measurements taken by Stanley and her lab members seemed to indicate these sources may produce more methane than scientists had previously known.

Together with other center researchers and scientists at the University of Winnipeg and the U.S. Geological Survey's LandCarbon Project, the team created a database of measured methane flux (the exchange of the gas between water and atmosphere) and methane concentrations measured in streams and rivers using data from 111 publications and three unpublished datasets.

The research team then used two different methods to calculate the best estimates of global methane emissions from the data. They found the emissions to be an order of magnitude higher than scientists had previously reported.

The result was "very surprising," Stanley says. "I thought maybe we'd be off by a factor of two, so I was taken aback by how much higher the estimate was."

The researchers pointed to one possible reason: Not every stream is identical. The analysis revealed noticeably higher methane emissions from streams and rivers in watersheds marked with heavy agriculture, urban development or the presence of dams. This suggests efforts to improve stream health may have the added benefit of reducing greenhouse gases.

"The fact that human activity in a watershed leads to high methane concentrations in those rivers and streams underscores yet another reason to pay attention to water quality," says Stanley. "On top of everything else, it adds to this climate problem, too."

Methane from freshwater is often a byproduct of bacterial metabolism, as they break down organic matter under low-oxygen conditions, like in the sediment at the bottom of a lake. As the climate warms, the contribution of greenhouse gases from natural sources likes rivers, streams and wetlands is expected to increase because higher temperatures accelerate this bacterial breakdown, releasing more carbon dioxide and methane.

The next step, says Stanley, is figuring out where all that methane comes from. Running rivers and streams are usually better aerated and full of oxygen, making all that methane a bit of a mystery. Is it coming from groundwater? Somewhere along a riverbank? At the bottom of the stream itself? For now, the babbling brook is keeping that information to itself.

###

Adam Hinterthuer (608) 890-2187, hinterthuer@wisc.edu

Media Contact

Emily Stanley
ehstanley@wisc.edu
608-213-3715

 @UWMadScience

http://www.wisc.edu 

Emily Stanley | EurekAlert!

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>