Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Ocean Technology Paired With Earthquake Sensors

10.10.2011
Combining recently launched green technology for navigating the oceans with the need to address gaps in critical earthquake information across the globe, scientists from Scripps Institution of Oceanography at UC San Diego have been granted $1.02 million from the National Science Foundation to develop a cutting-edge deep-ocean seismic system.

With contributions from Scripps Institution of Oceanography, the Cecil H. and Ida M. Green Foundation for Earth Sciences in La Jolla, Calif., and Liquid Robotics Inc. in Sunnyvale, Calif., and Kamuela, Hawaii, the total project is valued at $1.46 million.

The Scripps team, led by geophysicist Jonathan Berger and co-principal investigators John Orcutt, Gabrielle Laske and Jeffrey Babcock will develop a potentially transformative system for deploying seafloor seismometers and relaying their vital data in real-time for applications ranging from earthquake monitoring and deep Earth structure and dynamics to tsunami warning systems.

The project will capitalize on new technology developed by Liquid Robotics, which has pioneered the development of surfboard-sized autonomous unmanned vessels powered by wave energy and solar power, eliminating the need for fuel or costly manpower.

"Combining the Liquid Robotics technology with Scripps Oceanography's ocean bottom seismometer and global network technologies, this development will provide a means of increasing global coverage not only to seismic observations, but also to a variety of ocean bottom observables in an affordable and sustainable way," said Berger.

"Our autonomous, unmanned surface vessel, the Wave Glider®, draws its propulsion energy directly from the ocean's endless supply of waves and solar panels are used to recharge the computing and communication power supply," said Neil Trenaman, co-principal investigator and the head of Liquid Robotics' NSF project team. "By capitalizing on the abundance of natural ocean wave and solar energy, the Wave Glider is able to continuously transmit ocean data without the need for fuel, manpower or carbon emissions. This provides Scripps scientists an environmentally green and non-invasive technology to use for this critical earthquake and tsunami warning project."

Traditionally, ocean bottom seismometers are deployed by ships, record data for a specific period of time and are retrieved when a ship returns to the location. As envisioned in the new project, a Wave Glider from Liquid Robotics will navigate to a specific location, keep on station by its own power, link with a Scripps ocean bottom seismometer and serve as a communications gateway for relaying live seismic data from the ocean surface to shore via satellite.

The data collected during this project will be integrated into Project IDA (the International Deployment of Accelerometers), the global seismographic network operated by Scripps Oceanography's Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics. Data coordinated through Project IDA have been helping scientists for decades to better understand earthquakes and Earth's interior structure. In addition, the data will utilize software for sensor integration and platform control developed by NSF's Ocean Observatories Initiative (OOI) to enhance longevity and minimize long-term operational costs. Orcutt is principal investigator of the OOI Cyberinfrastructure program.

"We haven't made progress in getting long-term seismic stations established in the oceans because of the expense, so this project will help us fill in lots of holes in the coverage of the global network," said Berger.

"Liquid Robotics is extremely proud to collaborate with Scripps Institution of Oceanography for this NSF award," said William Vass, CEO of Liquid Robotics. "We are excited about the opportunity to advance earthquake and tsunami warnings research through the use of our Wave Gliders. Not only will this research help to better protect our global shorelines, it has the potential to open up new markets resulting in exciting new career opportunities."

Berger and Orcutt say the data from their new seismographic system could become an important asset for enhancing tsunami warning systems.

"When you have a large earthquake, it's important to quickly estimate the parameters of where it was and how big the seafloor displacement was," said Orcutt. "In order to do this, you need improved coverage in the ocean. During the recent devastating Japanese earthquake there were lots of places where there was no (seismographic) coverage, so this effort improves upon that."

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>