Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Great opportunities for marine research with new underwater vehicle


The University of Gothenburg soon will have its first autonomous underwater vehicle for research use. This will make it possible to conduct detailed studies of the seabed at great depths and track the climate thousands of years back in time.

After more than two years of preparation, the University of Gothenburg has signed a contract that will make Sweden’s first autonomous underwater vehicle for research use a reality.

AUV, Autonomous Underwater Vehicle

Anna Wahlin

Malin Arnesson

“This underwater vessel will enable us to do research in areas that we have been unable to reach so far, such as underneath glaciers in Antarctica that are 500 metres thick and beneath the Arctic sea ice”, says Anna Wåhlin, a professor of oceanography at the University of Gothenburg.

Enabling detailed studies of the seabed

The vessel is known as an AUV, Autonomous Underwater Vehicle. It is an unmanned, autonomous submarine equipped with a range of instruments and sensors capable of mapping the marine environment and measuring the ocean’s chemistry, physics and biology.

With the craft, detailed studies can be carried out at great depths in the oceans. The submarine operates independently and can be sent out on missions under the control of a mothership, where scientists can also be working on other investigations.

“To measure the marine environment to the extent necessary for understanding how the ocean works, we must make use of autonomous observation platforms on a much larger scale. Future research vessels will serve as motherships for many different autonomous vehicles, with our AUV being one of the largest and most complex.”

Large areas of the seabed can be surveyed

The new underwater vessel will be able to descend to a depth of 3,000 metres and cover a range of about 200-300 km. It is equipped with a new state-of-the-art navigation system that makes it possible to operate for long distances under water and simultaneously know where it is, a major challenge for craft below the surface of the ocean since signals from satellites or GPS cannot penetrate water. It is equipped with instruments that can be used to survey large areas of the seabed and ice in great detail. It also will have sonar that penetrates the floor of the ocean and reveals the nature of sedimentation in the past.

“That information can be used to tell how the climate has changed throughout history and how the edge of the ice has moved. In addition, the AUV will have ultramodern equipment to measure ocean currents, temperature, carbon dioxide, chlorophyll, nitrates and oxygen, among other things.”

Permits study of climate in the past

With the help of these instruments, scientists will be able to chart the ocean floor with such great resolution that they can determine the type of seabed, if it is clay or if coral grows there, and detect various types of phenomena such as contourites (convoluted sedimentary deposits on the seabed).

By peering into the seabed and sedimentation, scientists can also study the climate thousands of years back in time, conduct detailed studies of ocean currents and their chemistry and biology, and survey large areas of the ocean covered by ice. This will help calibrate the satellites that measure the expanse and thickness of ice. The underwater craft also will be used for investigations of water closer to Sweden – in the Skagerrak and the Baltic Sea, for example.

The Autonomous Underwater Vehicle is a national infrastructure, funded by a grant from the Knut and Alice Wallenberg Foundation and managed by a project team with representatives from the University of Gothenburg, Chalmers University of Technology and Stockholm University. The contract with the Norwegian company Kongsberg AS has now been signed. The underwater vehicle is expected to be in operation next year at the latest.

Anna Wåhlin. Professor at the University of Gothenburg, +46 (0)31-786 2866

Photo: Kongsberg AS
Portrait Anna Wåhlin, Malin Arnesson

Weitere Informationen:

Press Officer Thomas Melin | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>