Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great lake's sinkholes host exotic ecosystems

25.02.2009
Researchers are exploring extreme conditions for life in a place not known for extremes.

As little as 20 meters (66 feet) below the surface of Lake Huron, the third largest of North America's Great Lakes, peculiar geological formations--sinkholes made by water dissolving parts of an ancient underlying seabed--harbor bizarre ecosystems where the fish typical of the huge freshwater lake are rarely to be seen.

Instead, brilliant purple mats of cyanobacteria--cousins of microbes found at the bottoms of permanently ice-covered lakes in Antarctica--and pallid, floating ponytails of other microbial life thrive in the dense, salty water that's hostile to most familiar, larger forms of life because it lacks oxygen.

Groundwater from beneath Lake Huron is dissolving minerals from the defunct seabed and carrying them into the lake to form these exotic, extreme environments, says Bopaiah A. Biddanda of Grand Valley State University, in Muskegon, Mich., one of the leaders of a scientific team studying the sinkhole ecosystems. Those ecosystems are in a class not only with Antarctic lakes, but also with deep-sea, hydrothermal vents and cold seeps.

"You have this pristine fresh water lake that has what amounts to materials from 400 million years ago ... being pushed out into the lake," says team co-leader Steven A. Ruberg of the Great Lakes Environmental Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA).

The researchers describe this little-known underwater habitat and their ongoing investigations of it in the current issue of Eos, the newspaper of the Earth and Space Sciences, published weekly by the American Geophysical Union (AGU).

AGU is the world's largest organization of Earth and space scientists.

The scientists report that some deep sinkholes act as catch basins for dead and decaying plant and animal matter and collect a soft black sludge of sediment topped by a bacterial film. In the oxygen-depleted water, cyanobacteria carry out photosynthesis using sulfur compounds rather than water and give off hydrogen sulfide, the gas associated with rotting eggs. Where the sinkholes are deeper still and light fails, microorganisms use chemical means rather than photosynthesis to metabolize the sulfurous nutrients.

Biddanda, Ruberg, and their team are probing the origins of ancient minerals flowing in from beneath this fresh inland sea, striving to understand how long ago the minerals were deposited that are now entering the lake and how fast the salty brew containing them is arriving. The scientists also plan to chart transitions from light, oxygen-rich, fresh water near the lake's surface to dark, anoxic, salty soup down inside the sinkholes.

The sinkhole research--funded by the National Science Foundation and NOAA's Office of Ocean Exploration and Research--may shed light on how similar microbial communities can arise in environments as disparate as Antarctic lakes, deep-sea vents, and freshwater-lake sinkholes, the scientists say. Biddanda adds, "it might also lead to the discovery of novel organisms and previously unknown biochemical processes, furthering our exploration of life on Earth."

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>