Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great Indian Ocean Earthquake of 2004 Set Off Tremors in San Andreas Fault

12.12.2008
New research shows that the great Indian Ocean earthquake that struck off the Indonesian island of Sumatra on the day after Christmas in 2004 set off tremors nearly 9,000 miles away in the San Andreas fault at Parkfield, Calif.

In the last few years there has been a growing number of documented cases in which large earthquakes set off unfelt tremors in earthquake faults hundreds, sometimes even thousands, of miles away.

New research shows that the great Indian Ocean earthquake that struck off the Indonesian island of Sumatra on the day after Christmas in 2004 set off such tremors nearly 9,000 miles away in the San Andreas fault at Parkfield, Calif.

"We found that an earthquake that happened halfway around the world could trigger a seismic signal in the San Andreas fault. It is a low-stress event and a new kind of seismic phenomenon," said Abhijit Ghosh, a University of Washington doctoral student in Earth and space sciences.

"Previous research has shown that this phenomenon, called non-volcanic tremor, was produced in the San Andreas fault in 2002 by the Denali earthquake in Alaska, but seeing this new evidence of tremor triggered by an event as distant as the Sumatra earthquake is really exciting," he said.

Ghosh is to present the findings next week (Dec. 17) in a poster at the American Geophysical Union annual meeting in San Francisco.

The Indian Ocean earthquake on Dec. 26, 2004, was measured at magnitude 9.2 and generated tsunami waves that killed a quarter-million people. It was not known, however, that an earthquake of even that magnitude could set off non-volcanic tremor so far away.

The San Andreas fault in the Parkfield region is one of the most studied seismic areas in the world. It experiences an earthquake of magnitude 6.0 on an average of every 22 years, so a variety of instruments have been deployed to record the seismic activity.

In this case, the scientists examined data from instruments placed in holes bored in the ground as part of the High-Resolution Seismic Network operated by the University of California, Berkeley, as well as information gathered by the Northern California Seismic Network operated by the U.S. Geological Survey.

Signals corresponding with non-volcanic tremor at precisely the time that seismic waves from the Indian Ocean earthquake were passing the Parkfield area were recorded on a number of instruments as far as 125 miles apart.

"It's fairly obvious. There's no question of this tremor being triggered by the seismic waves from Sumatra," Ghosh said.

Scientists have pondered whether non-volcanic tremor is related to actual slippage within an earthquake fault or is caused by the flow of fluids below the Earth's surface. Recent research supports the idea that tremor is caused by fault slippage.

"If the fault is slipping from tremor in one place, it means stress is building up elsewhere on the fault, and that could bring the other area a little closer to a big earthquake," Ghosh said.

Monitoring tremor could help to estimate how much stress has built up within a particular fault.

"If the fault is closer to failure, then even a small amount of added stress likely can produce tremor," he said. "If the fault is already at low stress, then even high-energy waves probably won't produce tremor."

The work adds to the understanding of non-volcanic tremor and what role it might play in releasing or shifting stress within an earthquake-producing fault.

"Our single-biggest finding is that very small stress can trigger tremor," Ghosh said. "Finding tremor can help to track evolution of stress in the fault over space and time, and therefore could have significant implications in seismic hazard analysis."

Co-authors of the poster are John Vidale, Kenneth Creager and Heidi Houston of the UW and Zhigang Peng of the Georgia Institute of Technology. Funding for the work came from the National Science Foundation.

For more information, contact Ghosh at (404) 667-7470 or aghosh.earth@gmail.com

For more information on the AGU poster, see http://staff.washington.edu/aghosh1/AGhoshParkfield.html

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>