Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gondwana Supercontinent Underwent Massive Shift During Cambrian Explosion

11.08.2010
The Gondwana supercontinent underwent a 60-degree rotation across Earth’s surface during the Early Cambrian period, according to new evidence uncovered by a team of Yale University geologists.

Gondwana made up the southern half of Pangaea, the giant supercontinent that constituted the Earth’s landmass before it broke up into the separate continents we see today.

The study, which appears in the August issue of the journal Geology, has implications for the environmental conditions that existed at a crucial period in Earth’s evolutionary history called the Cambrian explosion, when most of the major groups of complex animals rapidly appeared.

The team studied the paleomagnetic record of the Amadeus Basin in central Australia, which was part of the Gondwana precursor supercontinent. Based on the directions of the ancient rock’s magnetization, they discovered that the entire Gondwana landmass underwent a rapid 60-degree rotational shift, with some regions attaining a speed of at least 16 (+12/-8) cm/year, about 525 million years ago. By comparison, the fastest shifts we see today are at speeds of about four cm/year.

This was the first large-scale rotation that Gondwana underwent after forming, said Ross Mitchell, a Yale graduate student and author of the study. The shift could either be the result of plate tectonics (the individual motion of continental plates with respect to one another) or “true polar wander,” in which the Earth’s solid land mass (down to the liquid outer core almost 3,000 km deep) rotates together with respect to the planet’s rotational axis, changing the location of the geographic poles, Mitchell said.

The debate about the role of true polar wander versus plate tectonics in defining the motions of Earth’s continents has been going on in the scientific community for decades, as more and more evidence is gathered, Mitchell said.

In this case, Mitchell and his team suggest that the rates of Gondwana’s motion exceed those of “normal” plate tectonics as derived from the record of the past few hundred million years. “If true polar wander caused the shift, that makes sense. If the shift was due to plate tectonics, we’d have to come up with some pretty novel explanations.”

Whatever the cause, the massive shift had some major consequences. As a result of the rotation, the area that is now Brazil would have rapidly moved from close to the southern pole toward the tropics. Such large movements of landmass would have affected environmental factors such as carbon concentrations and ocean levels, Mitchell said.

“There were dramatic environmental changes taking place during the Early Cambrian, right at the same time as Gondwana was undergoing this massive shift,” he said. “Apart from our understanding of plate tectonics and true polar wander, this could have had huge implications for the Cambrian explosion of animal life at that time.”

Other authors of the paper include David Evans and Taylor Kilian.

Citation: DOI: 10.1130/G30910.1

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>