Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gobi Desert Yield New Species of Nut-Cracking Dinosaur

18.06.2009
Plants or meat: That’s about all that fossils ever tell paleontologists about a dinosaur’s diet. But the skull characteristics of a new species of parrot-beaked dinosaur and its associated gizzard stones indicate that the animal fed on nuts and/or seeds. These characteristics present the first solid evidence of nut-eating in any dinosaur.

“The parallels in the skull to that in parrots, the descendants of dinosaurs most famous for their nut-cracking habits, is remarkable,” said Paul Sereno, a paleontologist at the University of Chicago and National Geographic Explorer-in-Residence. Sereno and two colleagues from the People’s Republic of China announce their discovery June 17 in the Proceedings of the Royal Society B.

The paleontologists discovered the new dinosaur, which they’ve named Psittacosaurus gobiensis, in the Gobi Desert of Inner Mongolia in 2001, and spent years preparing and studying the specimen. The dinosaur is approximately 110 million years old, dating to the mid-Cretaceous Period.

The quantity and size of gizzard stones in birds correlates with dietary preference. Larger, more numerous gizzard stones point to a diet of harder food, such as nuts and seeds. “The psittacosaur at hand has a huge pile of stomach stones, more than 50, to grind away at whatever it eats, and this is totally out of proportion to its three-foot body length,” Sereno explained.

Technically speaking, the dinosaur is also important because it displays a whole new way of chewing, which Sereno and co-authors have dubbed “inclined-angle” chewing. “The jaws are drawn backward and upward instead of just closing or moving fore and aft,” Sereno said. “It remains to be seen whether some other plant-eating dinosaurs or other reptiles had the same mechanism.”

The unusual chewing style has solved a major mystery regarding the wear patterns on psittacosaur teeth. Psittacosaurs sported rigid skulls, but their teeth show the same sliding wear patterns as plant-eating dinosaurs with flexible skulls.

Citation: “A new psittacosaur from Inner Mongolia and the parrot-like structure and function of the psittacosaur skull,” Paul C. Sereno, University of Chicago; Zhao Xijin, Chinese Academy of Sciences;

Tan Lin, Bureau of Land Resources, Hohot, People’s Republic of China, Proceedings of the Royal Society B, June 17, 2009

Funding sources: National Geographic Society; David and Lucile Packard Foundation; Biological Sciences Division, University of Chicago; and the Long Hao Institute of Stratigraphic Paleontology

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: GEOGRAPHIC Gobi Mongolia Nut-Cracking Proceeding Science TV Sereno desert dinosaur species

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>