Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming won't harm wind energy production, climate models predict

03.05.2011
The production of wind energy in the U.S. over the next 30-50 years will be largely unaffected by upward changes in global temperature, say a pair of Indiana University Bloomington scientists who analyzed output from several regional climate models to assess future wind patterns in America's lower 48 states.

Their report -- the first analysis of long-term stability of wind over the U.S. -- appears in this week's Proceedings of the National Academy of Sciences Early Edition.

"The greatest consistencies in wind density we found were over the Great Plains, which are already being used to harness wind, and over the Great Lakes, which the U.S. and Canada are looking at right now," said Provost's Professor of Atmospheric Science Sara Pryor, the project's principal investigator. "Areas where the model predicts decreases in wind density are quite limited, and many of the areas where wind density is predicted to decrease are off limits for wind farms anyway."

Coauthor Rebecca Barthelmie, also a professor of atmospheric science, said the present study begins to address a major dearth of information about the long-term stability of wind as an energy resource. Questions have lingered about whether a warmer atmosphere might lead to decreases in wind density or changes in wind patterns.

"We decided it was time someone did a thorough analysis of long term-patterns in wind density," Barthelmie said. "There are a lot of myths out there about the stability of wind patterns, and industry and government also want more information before making decisions to expand it."

Pryor and Barthelmie examined three different regional climate models in terms of wind density changes in a future U.S. experiencing modest but noticeable climate change (warming of about 2 degrees Celsius relative to the end of the last century).

The scientists found the Canadian Regional Climate Model (CRCM) did the best job modeling the current wind climate, but included results from Regional Climate Model 3 (created in Italy but now developed in the U.S.) and the Hadley Centre Model (developed in the U.K.) for the sake of academic robustness and to see whether the different models agreed or disagreed when seeded with the same parameters.

All three state-of-the-art regional climate models were chained to output from one of four atmospheric-ocean general circulation models to derive a complete picture of wind density changes throughout the study area -- the lower 48 United States and a portion of northern Mexico.

Comparing model predictions for 2041-2062 to past observations of wind density (1979-2000), most areas were predicted to see little or no change. The areas expected to see continuing high wind density -- and therefore greater opportunities for wind energy production -- are atop the Great Lakes, eastern New Mexico, southwestern Ohio, southern Texas, and large swaths of several Mexican states, including Nuevo Leon, Tamaulipas, Chihuahua, and Durango.

"There was quite a bit of variability in predicted wind densities, but interestingly, that variability was very similar to the variability we observe in current wind patterns," Pryor said.

The Great Lakes -- Lakes Michigan, Superior, and Erie in particular -- consistently showed high wind density no matter what model was used.

Such predictions should prove crucial to American policymakers and energy producers, many of whom have pledged to make wind energy 20 percent of America's total energy production by 2030. Currently only about 2 percent of American energy comes from wind.

"There have been questions about the stability of wind energy over the long term, " Barthelmie said. "So we are focusing on providing the best science available to help decision makers." Pryor added that 'this is the first assessment of its type, so the results have to be considered preliminary. Climate models are evolving and improving all the time, so we intend to continue this assessment as new models become available."

Wind farms are nearly carbon neutral, and studies show that a turbine pays for itself after only three months of energy production. A typical turbine lasts about 30 years, Pryor says, not because parts break, but because advances in technology make it desirable to replace turbines with newer versions.

"Wind speed increases with height, so turbines are also getting taller," Pryor said. "One of our future projects will be to assess the benefit of deploying bigger turbines that extend farther from the ground."

This is also the week of the annual Offshore Technology Conference in Houston, the largest such energy conference in the world, which has increasingly focused on offshore wind energy production in recent years.

Last month, Pryor was appointed to the National Climate Assessment and Development Committee, convened by the U.S. Department of Commerce's National Oceanic and Atmospheric Administration to help the U.S. government prepare for and deal with climate change. She also contributed to a special report used by the Intergovernmental Panel on Climate Change (IPCC). Barthelmie is a widely respected expert on wind energy, particularly in northern Europe, whose wind farms she has studied for years. She was the winner of the European Academy of Wind Energy's 2009 Academy Science Award. Both Pryor and Barthelmie are faculty in the IU Bloomington Department of Geography, a division of the College of Arts and Sciences, and the Center for Research in Environmental Science.

Pryor and Barthelmie's work was supported by grants from the National Science Foundation (BCS 1019603), the International Atomic Energy Authority, and the IU Center for Research in Environmental Sciences. The model output they analyzed were provided by the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP is funded by the National Science Foundation, the U.S. Department of Energy, the National Oceanic and Atmospheric Administration, and the U.S. Environmental Protection Agency Office of Research and Development.

To speak with Pryor or Barthelmie, please contact David Bricker, University Communications, at 812-391-2434, 812-856-9035, or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>