Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does global warming lead to a change in upper atmospheric transport?

16.12.2008
Long-term measurements provide opportunity to validate model predictions

Most atmospheric models predict that the rate of transport of air from the troposphere to the above lying stratosphere should be increasing due to climate change. Surprisingly, Dr. Andreas Engel together with an international group of researchers has now found that this does not seem to be happening.

On the contrary, it seems that the air air masses are moving more slowly than predicted. This could also imply that recovery of the ozone layer may be somewhat slower than predicted by state-of-the-art atmospheric climate models.

The researchers have published their results in Nature Geoscience (10.1038/NGEO388). They investigate the time it takes to transport the atmospheric trace gases sulfurhexafluoride (SF6) and carbon dioxide (CO2) from the troposphere (the atmospheric layer between the ground and about 10 km) to the stratosphere (the atmospheric layer between about 10 and 50 km altitude). They derive this "age" of the air from trace-gas measurements performed with large research balloons carrying measurement instrumentation up to altitudes of 35 km . As these measurements are quite complex and expensive, they can only be performed sporadically. In cooperation with German, American and Japanese colleagues, the group gathered all measurements of these trace gases available world-wide. For this purpose, archived air samples which were collected more than 30 years ago in the stratosphere above North American, have been analysed in Frankfurt. Andreas Engel explains that „Sulfurhexafluoride is amongst the most stable gases in the atmosphere, meaning that using today's analytical techniques, it is possible to analyse even extremely small amounts present in the 30 year-old air samples."

While state-of-the-art climate models predict an increase in stratospheric transport and thus younger ages, the measurements indicate that the age seems to have increased slightly, meaning that the transport rates have not increased. The Frankfurt research group wants to continue the long-term measurement series in order to provide further measurements which can help to evaluate the model predictions and document the long-term evolution of the atmosphere. Due to the results presented now, the predictions of atmospheric models must be re-evaluated. Andreas Engel emphasises that „our results do not contradict the principal global change predicted by the models, yet the exact mechanisms of how this influences transport of air in the upper atmosphere do not seem to be fully understood. More research is needed here."

Andreas Engel | EurekAlert!
Further information:
http://www.iau.uni-frankfurt.de

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>