Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming felt to deepest reaches of ocean

03.03.2014

Study shows climate change has put a freshwater lid on the Antarctic ocean, trapping warm water in ocean depths

In the mid-1970s, the first available satellite images of Antarctica during the polar winter revealed a huge ice-free region within the ice pack of the Weddell Sea. This ice-free region, or polynya, stayed open for three full winters before it closed.

Subsequent research showed that the opening was maintained as relatively warm waters churned upward from kilometres below the ocean's surface and released heat from the ocean's deepest reaches. But the polynya -- which was the size of New Zealand -- has not reappeared in the nearly 40 years since it closed, and scientists have since come to view it as a naturally rare event.

Now, however, a study led by researchers from McGill University suggests a new explanation: The 1970s polynya may have been the last gasp of what was previously a more common feature of the Southern Ocean, and which is now suppressed due to the effects of climate change on ocean salinity.

The McGill researchers, working with colleagues from the University of Pennsylvania, analyzed tens of thousands of measurements made by ships and robotic floats in the ocean around Antarctica over a 60-year period. Their study, published in Nature Climate Change, shows that the ocean's surface has been steadily getting less salty since the 1950s. This lid of fresh water on top of the ocean prevents mixing with the warm waters underneath. As a result, the deep ocean heat has been unable to get out and melt back the wintertime Antarctic ice pack.

"Deep ocean waters only mix directly to the surface in a few small regions of the global ocean, so this has effectively shut one of the main conduits for deep ocean heat to escape," says Casimir de Lavergne, a recent graduate of McGill's Master's program in Atmospheric and Oceanic Sciences and lead author of the paper.

The scientists also surveyed the latest generation of climate models, which predict an increase of precipitation in the Southern Ocean as atmospheric carbon dioxide rises. "This agrees with the observations, and fits with a well-accepted principle that a warming planet will see dryer regions become dryer and wetter regions become wetter," says Jaime Palter, a professor in McGill's Department of Atmospheric and Oceanic Sciences and co-author of the study. "True to form, the polar Southern Ocean - as a wet place - has indeed become wetter. And in response to the surface ocean freshening, the polynyas simulated by the models also disappeared." In the real world, the melting of glaciers on Antarctica - not included in the models - has also been adding freshwater to the ocean, possibly strengthening the freshwater lid.

The new work can also help explain a scientific mystery. It has recently been discovered that Antarctic Bottom Water, which fills the deepest layer of the world ocean, has been shrinking over the last few decades. "The new work can provide an explanation for why this is happening," says study co-author Eric Galbraith, a professor in McGill's Department of Earth and Planetary Sciences and a fellow of the Canadian Institute for Advanced Research. "The waters exposed in the Weddell polynya became very cold, making them very dense, so that they sunk down to become Antarctic Bottom Water that spread throughout the global ocean. This source of dense water was equal to at least twice the flow of all the rivers of the world combined, but with the surface capped by freshwater, it has been cut off."

"Although our analysis suggests it's unlikely, it's always possible that the giant polynya will manage to reappear in the next century," Galbraith adds. "If it does, it will release decades-worth of heat and carbon from the deep ocean to the atmosphere in a pulse of warming."

###

The research was supported by the Stephen and Anastasia Mysak Graduate Fellowship in Atmospheric and Oceanic Sciences, by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery programme, by the Canadian Institute for Advanced Research (CIFAR) and by computing infrastructure provided by the Canadian Foundation for Innovation and Compute Canada.

Chris Chipello | EurekAlert!

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>