Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming felt to deepest reaches of ocean


Study shows climate change has put a freshwater lid on the Antarctic ocean, trapping warm water in ocean depths

In the mid-1970s, the first available satellite images of Antarctica during the polar winter revealed a huge ice-free region within the ice pack of the Weddell Sea. This ice-free region, or polynya, stayed open for three full winters before it closed.

Subsequent research showed that the opening was maintained as relatively warm waters churned upward from kilometres below the ocean's surface and released heat from the ocean's deepest reaches. But the polynya -- which was the size of New Zealand -- has not reappeared in the nearly 40 years since it closed, and scientists have since come to view it as a naturally rare event.

Now, however, a study led by researchers from McGill University suggests a new explanation: The 1970s polynya may have been the last gasp of what was previously a more common feature of the Southern Ocean, and which is now suppressed due to the effects of climate change on ocean salinity.

The McGill researchers, working with colleagues from the University of Pennsylvania, analyzed tens of thousands of measurements made by ships and robotic floats in the ocean around Antarctica over a 60-year period. Their study, published in Nature Climate Change, shows that the ocean's surface has been steadily getting less salty since the 1950s. This lid of fresh water on top of the ocean prevents mixing with the warm waters underneath. As a result, the deep ocean heat has been unable to get out and melt back the wintertime Antarctic ice pack.

"Deep ocean waters only mix directly to the surface in a few small regions of the global ocean, so this has effectively shut one of the main conduits for deep ocean heat to escape," says Casimir de Lavergne, a recent graduate of McGill's Master's program in Atmospheric and Oceanic Sciences and lead author of the paper.

The scientists also surveyed the latest generation of climate models, which predict an increase of precipitation in the Southern Ocean as atmospheric carbon dioxide rises. "This agrees with the observations, and fits with a well-accepted principle that a warming planet will see dryer regions become dryer and wetter regions become wetter," says Jaime Palter, a professor in McGill's Department of Atmospheric and Oceanic Sciences and co-author of the study. "True to form, the polar Southern Ocean - as a wet place - has indeed become wetter. And in response to the surface ocean freshening, the polynyas simulated by the models also disappeared." In the real world, the melting of glaciers on Antarctica - not included in the models - has also been adding freshwater to the ocean, possibly strengthening the freshwater lid.

The new work can also help explain a scientific mystery. It has recently been discovered that Antarctic Bottom Water, which fills the deepest layer of the world ocean, has been shrinking over the last few decades. "The new work can provide an explanation for why this is happening," says study co-author Eric Galbraith, a professor in McGill's Department of Earth and Planetary Sciences and a fellow of the Canadian Institute for Advanced Research. "The waters exposed in the Weddell polynya became very cold, making them very dense, so that they sunk down to become Antarctic Bottom Water that spread throughout the global ocean. This source of dense water was equal to at least twice the flow of all the rivers of the world combined, but with the surface capped by freshwater, it has been cut off."

"Although our analysis suggests it's unlikely, it's always possible that the giant polynya will manage to reappear in the next century," Galbraith adds. "If it does, it will release decades-worth of heat and carbon from the deep ocean to the atmosphere in a pulse of warming."


The research was supported by the Stephen and Anastasia Mysak Graduate Fellowship in Atmospheric and Oceanic Sciences, by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery programme, by the Canadian Institute for Advanced Research (CIFAR) and by computing infrastructure provided by the Canadian Foundation for Innovation and Compute Canada.

Chris Chipello | EurekAlert!

More articles from Earth Sciences:

nachricht A simpler way to estimate the feedback between permafrost carbon and climate
06.10.2015 | DOE/Lawrence Berkeley National Laboratory

nachricht The warmer the higher: sea-level rise from Filchner-Ronne ice in Antarctica
06.10.2015 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>