Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming May Dent El Niño’s Protective Shield from Atlantic Hurricanes, Increase Droughts Elsewhere

25.09.2009
El Niño, the periodic eastern Pacific phenomenon credited with shielding the United States and Caribbean from severe hurricane seasons, may be overshadowed by its brother in the central Pacific due to global warming, according to an article in the September 24 issue of the journal Nature.

“There are two El Niños, or flavors of El Niño,” said Ben Kirtman, co-author of the study and professor of meteorology and physical oceanography at the University of Miami’s Rosentstiel School of Marine and Atmospheric Science. “In addition to the eastern Pacific El Niño which we know and love, a second El Niño in the central Pacific is on the increase.”

El Niño is a recurring warm water current along the equator in the Pacific Ocean that affects weather circulation patterns in the tropics. The eastern El Niño increases wind sheer in the Atlantic that may hamper the development of major hurricanes there. The central Pacific El Niño, near the International Dateline, has been blamed for worsening drought conditions in Australia and India as well as minimizing the effects of its beneficial brother to the east.

Led by Sang-Wook Yeh of the Korea Ocean Research & Development Institute, a team of scientists applied Pacific Ocean sea surface temperature data from the past 150 years to 11 global warming models developed by the Intergovernmental Panel on Climate Change. Eight of the models showed that global warming conditions will increase the incidence of the central Pacific El Niño. Over the past 20 years, according to the data, the frequency of an El Niño event in the central Pacific has increased from one out of every five to half of all El Niño occurrences.

"The results described in this paper indicate that the global impacts of El Niño may significantly change as the climate warms," said Yeh.

Though the centers of the central and eastern areas are roughly 4,100 miles apart, El Niños historically have not simultaneously occurred in both places. An increase in central Pacific El Niño events may reduce the hurricane-shielding effects of the eastern Pacific event.

“Currently, we are in the middle of a developing eastern Pacific El Niño event,” said Kirtman, “which is part of why we’re experiencing such a mild hurricane season in the Atlantic. We also anticipate the southern United States to have a fairly wet winter, and the northeast may be dry and warm.”

Kirtman expects the current El Niño event to end next spring, perhaps followed by a La Niña, which he expects may bode for a more intense Atlantic hurricane season in 2010.

Growing up in southern California, Kirtman frequently had to man the sump pump in his family’s basement during the rainy season, which he learned later was caused by El Niño.

“We’re finally learning about how ocean current flows and increases in sea surface temperature influence weather patterns, which affect every one of us, including the kid manning the sump pump,” he said. “I have devoted much of my career to studying El Niño because of how it affects people and their lives.”

Kirtman works with various meteorological organizations around the world to help developing countries respond to climate extremes.

“We provide them with the forecasts,” he said, “and the countries use the results to develop their response.”

About the University of Miami’s Rosenstiel School
The University of Miami is the largest private research institution in the southeastern United States. The University’s mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world’s premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu

Editor’s Note: Professor Kirtman may be reached through Barbra Gonzalez at 305-421-4704. Lead author, Sang-Wook Yeh, may be reached in Korea at swyeh@kori.re.kr or +82-10-6533-3314. A scientist knowledgeable of this work but not associated with the paper is Dr. Peter Webster at Georgia Tech at peter.webster@eas.gatech.edu or +1-404-894-1748.

Media Contacts:
Barbra Gonzalez
UM Rosenstiel School
305.421.4704
barbgo@rsmas.miami.edu
Marie Guma-Diaz
UM Media Relations Office
305.284.1601
m.gumadiaz@umiami.edu

Barbra Gonzalez | UM Rosenstiel School
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems
29.03.2017 | University of Wyoming

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>