Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global rivers emit 3 times IPCC estimates of greenhouse gas nitrous oxide

21.12.2010
Waterways receiving nitrogen from human activities are significant source

What goes in must come out, a truism that now may be applied to global river networks.

Human-caused nitrogen loading to river networks is a potentially important source of nitrous oxide emission to the atmosphere. Nitrous oxide is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction.

It happens via a microbial process called denitrification, which converts nitrogen to nitrous oxide and an inert gas called dinitrogen.

When summed across the globe, scientists report this week in the journal Proceedings of the National Academy of Sciences (PNAS), river and stream networks are the source of at least 10 percent of human-caused nitrous oxide emissions to the atmosphere.

That's three times the amount estimated by the Intergovernmental Panel on Climate Change (IPCC).

Rates of nitrous oxide production via denitrification in small streams increase with nitrate concentrations.

"Human activities, including fossil fuel combustion and intensive agriculture, have increased the availability of nitrogen in the environment," says Jake Beaulieu of the University of Notre Dame and the U.S. Environmental Protection Agency in Cincinnati, Ohio, and lead author of the PNAS paper.

"Much of this nitrogen is transported into river and stream networks," he says, "where it may be converted to nitrous oxide, a potent greenhouse gas, via the activity of microbes."

Beaulieu and co-authors measured nitrous oxide production rates from denitrification in 72 streams draining multiple land-use types across the United States. Their work was part of a broader cross-site study of nitrogen processing in streams.

"This multi-site experiment clearly establishes streams and rivers as important sources of nitrous oxide," says Henry Gholz, program director in NSF's Division of Environmental Biology, which funded the research.

"This is especially the case for those draining nitrogen-enriched urbanized and agricultural watersheds, highlighting the importance of managing nitrogen before it reaches open water," Gholz says. "This new global emission estimate is startling."

Atmospheric nitrous oxide concentration has increased by some 20 percent over the past century, and continues to rise at a rate of about 0.2 to 0.3 percent per year.

Beaulieu and colleagues, say the global warming potential of nitrous oxide is 300-fold greater than carbon dioxide.

Nitrous oxide accounts for some six percent of human-induced climate change, scientists estimate.

They believe that nitrous oxide is the leading human-caused threat to the atmospheric ozone layer, which protects Earth from harmful ultraviolet radiation from the Sun.

Researchers had estimated that denitrification in river networks might be a globally important source of human-derived nitrous oxide, but the process had been poorly understood, says Beaulieu, and estimates varied widely.

While more than 99 percent of denitrified nitrogen in streams is converted to the inert gas dinitrogen rather than nitrous oxide, river networks are still leading sources of global nitrous oxide emissions, according to the new results.

"Changes in agricultural and land-use practices that result in less nitrogen being delivered to streams would reduce nitrous oxide emissions from river networks," says Beaulieu.

The findings, he and co-authors hope, will lead to more effective mitigation strategies.

Other authors of the paper are: Jennifer Tank of the University of Notre Dame; Stephen Hamilton of Michigan State University; Wilfred Wollheim of the University of New Hampshire; Robert Hall of the University of Wyoming; Patrick Mulholland of Oak Ridge National Laboratory and the University of Tennessee; Bruce Peterson of Marine Biological Laboratory in Woods Hole, Mass.; Linda Ashkenas of Oregon State University; Lee Cooper of the Chesapeake Biological Laboratory in Solomons, Md.; Clifford Dahm of the University of New Mexico; Walter Dodds of Kansas State University; Nancy Grimm of Arizona State University; Sherri Johnson of the U.S. Forest Service in Corvallis, Ore.; William McDowell of the University of New Hampshire; Geoffe Poole of Montana State University; HM Valett of Virginia Polytechnic Institute and State University; Clay Arango of Central Washington University; Melody Bernot of Ball State University; Amy Burgin of Wright State University; Chelsea Crenshaw of the University of New Mexico; Ashley Helton of the University of Georgia; Laura Johnson of Indiana University; Jonathan O'Brien of the University of Canterbury in Christchurch, New Zealand; Jody Potter of the University of New Hampshire; Richard Sheibley of the University of Notre Dame and the U.S. Geological Survey in Tacoma, Washington; Daniel Sobota of Washington State University; and Suzanne Thomas of the Marine Biological Laboratory in Woods Hole, Mass.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

Rochester scientists discover gene controlling genetic recombination rates

23.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>