Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global rivers emit 3 times IPCC estimates of greenhouse gas nitrous oxide

21.12.2010
Waterways receiving nitrogen from human activities are significant source

What goes in must come out, a truism that now may be applied to global river networks.

Human-caused nitrogen loading to river networks is a potentially important source of nitrous oxide emission to the atmosphere. Nitrous oxide is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction.

It happens via a microbial process called denitrification, which converts nitrogen to nitrous oxide and an inert gas called dinitrogen.

When summed across the globe, scientists report this week in the journal Proceedings of the National Academy of Sciences (PNAS), river and stream networks are the source of at least 10 percent of human-caused nitrous oxide emissions to the atmosphere.

That's three times the amount estimated by the Intergovernmental Panel on Climate Change (IPCC).

Rates of nitrous oxide production via denitrification in small streams increase with nitrate concentrations.

"Human activities, including fossil fuel combustion and intensive agriculture, have increased the availability of nitrogen in the environment," says Jake Beaulieu of the University of Notre Dame and the U.S. Environmental Protection Agency in Cincinnati, Ohio, and lead author of the PNAS paper.

"Much of this nitrogen is transported into river and stream networks," he says, "where it may be converted to nitrous oxide, a potent greenhouse gas, via the activity of microbes."

Beaulieu and co-authors measured nitrous oxide production rates from denitrification in 72 streams draining multiple land-use types across the United States. Their work was part of a broader cross-site study of nitrogen processing in streams.

"This multi-site experiment clearly establishes streams and rivers as important sources of nitrous oxide," says Henry Gholz, program director in NSF's Division of Environmental Biology, which funded the research.

"This is especially the case for those draining nitrogen-enriched urbanized and agricultural watersheds, highlighting the importance of managing nitrogen before it reaches open water," Gholz says. "This new global emission estimate is startling."

Atmospheric nitrous oxide concentration has increased by some 20 percent over the past century, and continues to rise at a rate of about 0.2 to 0.3 percent per year.

Beaulieu and colleagues, say the global warming potential of nitrous oxide is 300-fold greater than carbon dioxide.

Nitrous oxide accounts for some six percent of human-induced climate change, scientists estimate.

They believe that nitrous oxide is the leading human-caused threat to the atmospheric ozone layer, which protects Earth from harmful ultraviolet radiation from the Sun.

Researchers had estimated that denitrification in river networks might be a globally important source of human-derived nitrous oxide, but the process had been poorly understood, says Beaulieu, and estimates varied widely.

While more than 99 percent of denitrified nitrogen in streams is converted to the inert gas dinitrogen rather than nitrous oxide, river networks are still leading sources of global nitrous oxide emissions, according to the new results.

"Changes in agricultural and land-use practices that result in less nitrogen being delivered to streams would reduce nitrous oxide emissions from river networks," says Beaulieu.

The findings, he and co-authors hope, will lead to more effective mitigation strategies.

Other authors of the paper are: Jennifer Tank of the University of Notre Dame; Stephen Hamilton of Michigan State University; Wilfred Wollheim of the University of New Hampshire; Robert Hall of the University of Wyoming; Patrick Mulholland of Oak Ridge National Laboratory and the University of Tennessee; Bruce Peterson of Marine Biological Laboratory in Woods Hole, Mass.; Linda Ashkenas of Oregon State University; Lee Cooper of the Chesapeake Biological Laboratory in Solomons, Md.; Clifford Dahm of the University of New Mexico; Walter Dodds of Kansas State University; Nancy Grimm of Arizona State University; Sherri Johnson of the U.S. Forest Service in Corvallis, Ore.; William McDowell of the University of New Hampshire; Geoffe Poole of Montana State University; HM Valett of Virginia Polytechnic Institute and State University; Clay Arango of Central Washington University; Melody Bernot of Ball State University; Amy Burgin of Wright State University; Chelsea Crenshaw of the University of New Mexico; Ashley Helton of the University of Georgia; Laura Johnson of Indiana University; Jonathan O'Brien of the University of Canterbury in Christchurch, New Zealand; Jody Potter of the University of New Hampshire; Richard Sheibley of the University of Notre Dame and the U.S. Geological Survey in Tacoma, Washington; Daniel Sobota of Washington State University; and Suzanne Thomas of the Marine Biological Laboratory in Woods Hole, Mass.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>