Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global food trade can alleviate water scarcity

18.03.2014

International trade of food crops led to freshwater savings worth 2.4 billion US-Dollars in 2005 and had a major impact on local water stress.

This is shown in a new study by the Potsdam Institute for Climate Impact Research. Trading food involves the trade of virtually embedded water used for production, and the amount of that water depends heavily on the climatic conditions in the production region: It takes, for instance, 2.700 liters of water to produce 1 kilo of cereals in Morocco, while the same kilo produced in Germany uses up only 520 liters.

Analyzing the impact of trade on local water scarcity, our scientists found that it is not the amount of water used that counts most, but the origin of the water. While parts of India or the Middle East alleviate their water scarcity through importing crops, some countries in Southern Europe export agricultural goods from water-scarce sites, thus increasing local water stress.

“Agriculture accounts for 70 percent of our global freshwater consumption and therefore has a huge potential to affect local water scarcity,” lead author Anne Biewald says. The amount of water used in the production of agricultural export goods is referred to as virtual water trade. So far, however, the concept of virtual water could not identify the regional water source, but used national or even global averages instead.

... more about:
»conditions »countries »crop »crops »feed »livestock »parts »productivity

“Our analysis shows that it is not the amount of water that matters, but whether global food trade leads to conserving or depleting water reserves in water-scarce regions,” Biewald says.

Combining biophysical simulations of the virtual water content of crop production with agro-economic land-use and water-use simulations, the scientists were able for the first time to determine the positive and negative impacts on water scarcity through international trade of crops, livestock and feed. The effects were analyzed with high resolution on a subnational level to account for large countries like India or the US with different climatic zones and relating varying local conditions regarding water availability and water productivity.

Previously, these countries could only be evaluated through national average water productivity. “Local water scarcity is reduced through imports of agricultural goods, and therefore saving regional agricultural production particularly in parts of India, Morocco, Egypt and Pakistan. But scarcity is exacerbated by exports in parts of Turkey, Spain, Portugal, Afghanistan and the US,” Biewald says. Despite the fact that Europe alone exports virtual water in food crops worth 3.1 billion US-Dollars, the scientists found that international trade of food crops today globally accounts for water savings worth 2.4 billion US-Dollars.

The study, focusing on data of the year 2005, shows that trade has a considerable impact on agricultural production. Trade reduces global crop production and area due to regionally different livestock production efficiencies: one kilo of beef for instance can be produced with much less input feed in the US than in Africa, so it might be more economical for the world to have regions specializing in certain products and exporting them to others.

“In contrast to popular perception, global food trade and the related virtual water flows indeed offer the possibility of relieving water stress and making global water use more efficient,” co-author Hermann Lotze-Campen, co-chair of PIK´s research domain Climate Impacts and Vulnerabilities, says.

“When it comes to the implementation of policy instruments which affect global trade – such as trade liberalization, import taxes or agricultural subsidies –, decision makers have to take into account the indirect effects on water as well. To connect international food trade to regional water scarcity can contribute to advance this debate.”

Article:Biewald, A., Rolinski, S., Lotze-Campen, H., Schmitz, C., Dietrich, J.P (2014): Valueing the impact of trade on local blue water. Ecological Economics, Volume 101 [10.1016/j.ecolecon.2014.02.003]

Weblink to the article: http://www.sciencedirect.com/science/article/pii/S0921800914000391

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

http://www.pik-potsdam.de/news/press-releases/global-food-trade-can-alleviate-wa...

Mareike Schodder | PIK News

Further reports about: conditions countries crop crops feed livestock parts productivity

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>