Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global food trade can alleviate water scarcity

18.03.2014

International trade of food crops led to freshwater savings worth 2.4 billion US-Dollars in 2005 and had a major impact on local water stress.

This is shown in a new study by the Potsdam Institute for Climate Impact Research. Trading food involves the trade of virtually embedded water used for production, and the amount of that water depends heavily on the climatic conditions in the production region: It takes, for instance, 2.700 liters of water to produce 1 kilo of cereals in Morocco, while the same kilo produced in Germany uses up only 520 liters.

Analyzing the impact of trade on local water scarcity, our scientists found that it is not the amount of water used that counts most, but the origin of the water. While parts of India or the Middle East alleviate their water scarcity through importing crops, some countries in Southern Europe export agricultural goods from water-scarce sites, thus increasing local water stress.

“Agriculture accounts for 70 percent of our global freshwater consumption and therefore has a huge potential to affect local water scarcity,” lead author Anne Biewald says. The amount of water used in the production of agricultural export goods is referred to as virtual water trade. So far, however, the concept of virtual water could not identify the regional water source, but used national or even global averages instead.

... more about:
»conditions »countries »crop »crops »feed »livestock »parts »productivity

“Our analysis shows that it is not the amount of water that matters, but whether global food trade leads to conserving or depleting water reserves in water-scarce regions,” Biewald says.

Combining biophysical simulations of the virtual water content of crop production with agro-economic land-use and water-use simulations, the scientists were able for the first time to determine the positive and negative impacts on water scarcity through international trade of crops, livestock and feed. The effects were analyzed with high resolution on a subnational level to account for large countries like India or the US with different climatic zones and relating varying local conditions regarding water availability and water productivity.

Previously, these countries could only be evaluated through national average water productivity. “Local water scarcity is reduced through imports of agricultural goods, and therefore saving regional agricultural production particularly in parts of India, Morocco, Egypt and Pakistan. But scarcity is exacerbated by exports in parts of Turkey, Spain, Portugal, Afghanistan and the US,” Biewald says. Despite the fact that Europe alone exports virtual water in food crops worth 3.1 billion US-Dollars, the scientists found that international trade of food crops today globally accounts for water savings worth 2.4 billion US-Dollars.

The study, focusing on data of the year 2005, shows that trade has a considerable impact on agricultural production. Trade reduces global crop production and area due to regionally different livestock production efficiencies: one kilo of beef for instance can be produced with much less input feed in the US than in Africa, so it might be more economical for the world to have regions specializing in certain products and exporting them to others.

“In contrast to popular perception, global food trade and the related virtual water flows indeed offer the possibility of relieving water stress and making global water use more efficient,” co-author Hermann Lotze-Campen, co-chair of PIK´s research domain Climate Impacts and Vulnerabilities, says.

“When it comes to the implementation of policy instruments which affect global trade – such as trade liberalization, import taxes or agricultural subsidies –, decision makers have to take into account the indirect effects on water as well. To connect international food trade to regional water scarcity can contribute to advance this debate.”

Article:Biewald, A., Rolinski, S., Lotze-Campen, H., Schmitz, C., Dietrich, J.P (2014): Valueing the impact of trade on local blue water. Ecological Economics, Volume 101 [10.1016/j.ecolecon.2014.02.003]

Weblink to the article: http://www.sciencedirect.com/science/article/pii/S0921800914000391

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Weitere Informationen:

http://www.pik-potsdam.de/news/press-releases/global-food-trade-can-alleviate-wa...

Mareike Schodder | PIK News

Further reports about: conditions countries crop crops feed livestock parts productivity

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>