Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global cooling as significant as global warming

17.06.2013
A "cold snap" 116 million years ago triggered a similar marine ecosystem crisis to those witnessed in the past as a result of global warming, according to research published today in Nature Geoscience.

The international study involving experts from the universities of Newcastle, UK, Cologne, Frankfurt and GEOMAR-Kiel, confirms the link between global cooling and a crash in the marine ecosystem during the mid-Cretaceous greenhouse period.

It also quantifies for the first time the amplitude and duration of the temperature change. Analysing the geochemistry and micropaleontology of a marine sediment core taken from the North Atlantic Ocean, the team show that a global temperature drop of up to 5oC resulted in a major shift in the global carbon cycle over a period of 2.5 million years.

Occurring during a time of high tectonic activity that drove the breaking up of the super-continent Pangaea, the research explains how the opening and widening of new ocean basins around Africa, South America and Europe created additional space where large amounts of atmospheric CO2 was fixed by photosynthetic organisms like marine algae. The dead organisms were then buried in the sediments on the sea bed, producing organic, carbon rich shale in these new basins, locking away the carbon that was previously in the atmosphere.

The result of this massive carbon fixing mechanism was a drop in the levels of atmospheric CO2, reducing the greenhouse effect and lowering global temperature.

This period of global cooling came to an end after about 2 million years following the onset of a period of intense local volcanic activity in the Indian Ocean. Producing huge volumes of volcanic gas, carbon that had been removed from the atmosphere when it was locked away in the shale was replaced with CO2 from the Earth's interior, re-instating a greenhouse effect which led to warmer climate and an end to the "cold snap".

The research team say this study highlights how global climate is intrinsically linked to processes taking place in the earth's interior at million year time scales and that these processes can modify ecospace for marine life, driving evolution.

Current research efforts tend to concentrate on global warming and the impact that a rise of a few degrees might have on past and present day ecosystems. This study shows that if global temperatures swing the other way by a similar amount, the result can be just as severe, at least for marine life.

However, the research team emphasise that the observed changes of the earth system in the Cretaceous happened over millions of years, rather than decades or centennial, which cannot easily be related to our rapidly changing modern climate conditions.

"As always it's a question of fine balance and scale," explains Thomas Wagner, Professor of Earth Systems Science at Newcastle University, and one of the leaders of this study.

"All earth system processes are operating all the time and at different temporal and spatial scales; but when something upsets the balance – be it a large scale but long term natural phenomenon or a short and massive change to global greenhouse gases due to anthropogenic activity – there are multiple, potential knock-on effects on the whole system.

"The trick is to identify and quantify the initial drivers and consequences, which remains an ongoing challenge in climate research."

Thomas Wagner | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>