Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass sponge as a living climate archive

03.04.2012
An 11,000 year-old deep-sea sponge provides a record of past environmental changes in the sea.

Climate scientists have discovered a new archive of historical sea temperatures. With the help of the skeleton of a sponge that belongs to the Monorhaphis chuni species and that lived for 11,000 years in the East China Sea an international team around scientists from the Max Planck Institute for Chemistry could show that the deep ocean temperature changed several times over the past millennia.


Microscopic image of a glass sponge. The image shows a one millimeter cross section of the skeleton of Monorhaphis chuni. The lamellae grew inside outwards during the 11,000 years. The chemical elements incorporated during this period show that the water temperature in its environment changed significantly several times. Picture: Werner E. G. Müller, University Medical Center Mainz.


Skeleton of the glass sponge Monorhaphis chuni in the hands of Xiaohong Wang. The more than two meters long silica skeleton is flexible and resembles a fiberglass rod. Picture: Werner E. G. Müller, University Medical Center Mainz

As isotopic and elemental analyses showed, the sea water temperature in the vicinity of the sponge increased at least once from less than two degrees Celsius to six to ten degrees Celsius. These temperature changes were not previously known and are due to eruptions of seamounts.

The deep sea is full of unknown creatures, but it is new to find one with which one can trace back thousand years of climate changes. Researchers at the Max Planck Institute for Chemistry in Mainz have now determined the age of a more than two meters long and one centimeter thick glass sponge to be about 11,000 years. It is among the longest living animal species that exist today. From this animal`s skeleton the researchers can also read how its environment and the climate changed during its life.

The team that included amongst researchers from the Max Planck Institute for Chemistry in Mainz, researchers from China, and Switzerland, determined the age of the sponge needle, with the Latin name Monorhaphis chuni, based on the isotopic and elemental composition of its skeleton. It consists of silicon dioxide and is reminiscent of a glass fiber rod, made up of hundreds of fine lamellae which have grown annually like the rings of a tree from the inside outwards. The skeleton of the sponge was already found in 1986 at a depth of approximately 1,100 meters in the East China Sea. Here, these bizarre animals, that attach with one end to the seabed, live even today.

"Initially we recognized four areas under the electron microscope where the lamellae grew irregularly," says Klaus Peter Jochum, lead author of the now -published study. "They indicate time periods of increasing water temperature, for example due to the eruption of a seamount," adds the Mainz biogeochemist who was introduced to the fascinating research object through the sponge experts Werner E. G. Müller and Xiaohong Wang from the Institute of Physiological Chemistry of the University Medical Center Mainz. Manganese traces in the skeleton indicate periods of hydrothermal activity in the sea, as the manganese concentration in the water increases after the eruption of a seamount.

In addition, the researchers investigated the lamellae for trace elements and oxygen isotopes with the help of various mass spectrometers. The ratio of magnesium to calcium and the distribution of oxygen isotopes allow conclusions about the water temperature during the period in which the sponge incorporated these chemical elements into its skeleton. At a depth of 1000 meters and more the sea temperatures are rather uniform worldwide. The temperature in the vicinity of the glass sponge thus permits conclusions about both the global and the local temperature of the deep sea.

Analyses showed that the outer silica layer of the glass sponge had a temperature of 1.9 degrees Celsius at the time of its birth. As marine scientists know from other sources, this was the temperature in the deep sea 11,000 years ago. The chemical analyses also showed that the water temperature in the first thousand years of the sponge´s life remained almost constant. It then suddenly increased from about two degrees Celsius to six to ten degrees Celsius, and afterwards decreased again to today's sea water temperature of four degrees Celsius. Meanwhile there were further temperature changes, which are also evident through the irregular growth of the lamellae.

The local temperature fluctuations in the East China Sea, which the researchers determined with the help of the glass sponge, were not previously known. The glass sponge thus allows insights into previously unknown climate change. In order to obtain more precise information about the deep sea´s past climate, the researchers want to investigate the sponge needle and other glass sponges for silicon isotopes. They thus help to give climate researchers a more accurate data base for modeling of historical and current climate change.

Original publication:
Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals
Klaus Peter Jochum, Xiaohong Wang, Torsten W. Vennemann, Bärbel Sinha and Werner E. G. Müller
Chemical Geology 300-301, Pages 143–151 (2012)

Contact:
Dr. Klaus Peter Jochum
Max Planck Institute for Chemistry
Phone: 06131-305 6701
E-mail: k.jochum@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>