Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass sponge as a living climate archive

03.04.2012
An 11,000 year-old deep-sea sponge provides a record of past environmental changes in the sea.

Climate scientists have discovered a new archive of historical sea temperatures. With the help of the skeleton of a sponge that belongs to the Monorhaphis chuni species and that lived for 11,000 years in the East China Sea an international team around scientists from the Max Planck Institute for Chemistry could show that the deep ocean temperature changed several times over the past millennia.


Microscopic image of a glass sponge. The image shows a one millimeter cross section of the skeleton of Monorhaphis chuni. The lamellae grew inside outwards during the 11,000 years. The chemical elements incorporated during this period show that the water temperature in its environment changed significantly several times. Picture: Werner E. G. Müller, University Medical Center Mainz.


Skeleton of the glass sponge Monorhaphis chuni in the hands of Xiaohong Wang. The more than two meters long silica skeleton is flexible and resembles a fiberglass rod. Picture: Werner E. G. Müller, University Medical Center Mainz

As isotopic and elemental analyses showed, the sea water temperature in the vicinity of the sponge increased at least once from less than two degrees Celsius to six to ten degrees Celsius. These temperature changes were not previously known and are due to eruptions of seamounts.

The deep sea is full of unknown creatures, but it is new to find one with which one can trace back thousand years of climate changes. Researchers at the Max Planck Institute for Chemistry in Mainz have now determined the age of a more than two meters long and one centimeter thick glass sponge to be about 11,000 years. It is among the longest living animal species that exist today. From this animal`s skeleton the researchers can also read how its environment and the climate changed during its life.

The team that included amongst researchers from the Max Planck Institute for Chemistry in Mainz, researchers from China, and Switzerland, determined the age of the sponge needle, with the Latin name Monorhaphis chuni, based on the isotopic and elemental composition of its skeleton. It consists of silicon dioxide and is reminiscent of a glass fiber rod, made up of hundreds of fine lamellae which have grown annually like the rings of a tree from the inside outwards. The skeleton of the sponge was already found in 1986 at a depth of approximately 1,100 meters in the East China Sea. Here, these bizarre animals, that attach with one end to the seabed, live even today.

"Initially we recognized four areas under the electron microscope where the lamellae grew irregularly," says Klaus Peter Jochum, lead author of the now -published study. "They indicate time periods of increasing water temperature, for example due to the eruption of a seamount," adds the Mainz biogeochemist who was introduced to the fascinating research object through the sponge experts Werner E. G. Müller and Xiaohong Wang from the Institute of Physiological Chemistry of the University Medical Center Mainz. Manganese traces in the skeleton indicate periods of hydrothermal activity in the sea, as the manganese concentration in the water increases after the eruption of a seamount.

In addition, the researchers investigated the lamellae for trace elements and oxygen isotopes with the help of various mass spectrometers. The ratio of magnesium to calcium and the distribution of oxygen isotopes allow conclusions about the water temperature during the period in which the sponge incorporated these chemical elements into its skeleton. At a depth of 1000 meters and more the sea temperatures are rather uniform worldwide. The temperature in the vicinity of the glass sponge thus permits conclusions about both the global and the local temperature of the deep sea.

Analyses showed that the outer silica layer of the glass sponge had a temperature of 1.9 degrees Celsius at the time of its birth. As marine scientists know from other sources, this was the temperature in the deep sea 11,000 years ago. The chemical analyses also showed that the water temperature in the first thousand years of the sponge´s life remained almost constant. It then suddenly increased from about two degrees Celsius to six to ten degrees Celsius, and afterwards decreased again to today's sea water temperature of four degrees Celsius. Meanwhile there were further temperature changes, which are also evident through the irregular growth of the lamellae.

The local temperature fluctuations in the East China Sea, which the researchers determined with the help of the glass sponge, were not previously known. The glass sponge thus allows insights into previously unknown climate change. In order to obtain more precise information about the deep sea´s past climate, the researchers want to investigate the sponge needle and other glass sponges for silicon isotopes. They thus help to give climate researchers a more accurate data base for modeling of historical and current climate change.

Original publication:
Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals
Klaus Peter Jochum, Xiaohong Wang, Torsten W. Vennemann, Bärbel Sinha and Werner E. G. Müller
Chemical Geology 300-301, Pages 143–151 (2012)

Contact:
Dr. Klaus Peter Jochum
Max Planck Institute for Chemistry
Phone: 06131-305 6701
E-mail: k.jochum@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>