Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass sponge as a living climate archive

03.04.2012
An 11,000 year-old deep-sea sponge provides a record of past environmental changes in the sea.

Climate scientists have discovered a new archive of historical sea temperatures. With the help of the skeleton of a sponge that belongs to the Monorhaphis chuni species and that lived for 11,000 years in the East China Sea an international team around scientists from the Max Planck Institute for Chemistry could show that the deep ocean temperature changed several times over the past millennia.


Microscopic image of a glass sponge. The image shows a one millimeter cross section of the skeleton of Monorhaphis chuni. The lamellae grew inside outwards during the 11,000 years. The chemical elements incorporated during this period show that the water temperature in its environment changed significantly several times. Picture: Werner E. G. Müller, University Medical Center Mainz.


Skeleton of the glass sponge Monorhaphis chuni in the hands of Xiaohong Wang. The more than two meters long silica skeleton is flexible and resembles a fiberglass rod. Picture: Werner E. G. Müller, University Medical Center Mainz

As isotopic and elemental analyses showed, the sea water temperature in the vicinity of the sponge increased at least once from less than two degrees Celsius to six to ten degrees Celsius. These temperature changes were not previously known and are due to eruptions of seamounts.

The deep sea is full of unknown creatures, but it is new to find one with which one can trace back thousand years of climate changes. Researchers at the Max Planck Institute for Chemistry in Mainz have now determined the age of a more than two meters long and one centimeter thick glass sponge to be about 11,000 years. It is among the longest living animal species that exist today. From this animal`s skeleton the researchers can also read how its environment and the climate changed during its life.

The team that included amongst researchers from the Max Planck Institute for Chemistry in Mainz, researchers from China, and Switzerland, determined the age of the sponge needle, with the Latin name Monorhaphis chuni, based on the isotopic and elemental composition of its skeleton. It consists of silicon dioxide and is reminiscent of a glass fiber rod, made up of hundreds of fine lamellae which have grown annually like the rings of a tree from the inside outwards. The skeleton of the sponge was already found in 1986 at a depth of approximately 1,100 meters in the East China Sea. Here, these bizarre animals, that attach with one end to the seabed, live even today.

"Initially we recognized four areas under the electron microscope where the lamellae grew irregularly," says Klaus Peter Jochum, lead author of the now -published study. "They indicate time periods of increasing water temperature, for example due to the eruption of a seamount," adds the Mainz biogeochemist who was introduced to the fascinating research object through the sponge experts Werner E. G. Müller and Xiaohong Wang from the Institute of Physiological Chemistry of the University Medical Center Mainz. Manganese traces in the skeleton indicate periods of hydrothermal activity in the sea, as the manganese concentration in the water increases after the eruption of a seamount.

In addition, the researchers investigated the lamellae for trace elements and oxygen isotopes with the help of various mass spectrometers. The ratio of magnesium to calcium and the distribution of oxygen isotopes allow conclusions about the water temperature during the period in which the sponge incorporated these chemical elements into its skeleton. At a depth of 1000 meters and more the sea temperatures are rather uniform worldwide. The temperature in the vicinity of the glass sponge thus permits conclusions about both the global and the local temperature of the deep sea.

Analyses showed that the outer silica layer of the glass sponge had a temperature of 1.9 degrees Celsius at the time of its birth. As marine scientists know from other sources, this was the temperature in the deep sea 11,000 years ago. The chemical analyses also showed that the water temperature in the first thousand years of the sponge´s life remained almost constant. It then suddenly increased from about two degrees Celsius to six to ten degrees Celsius, and afterwards decreased again to today's sea water temperature of four degrees Celsius. Meanwhile there were further temperature changes, which are also evident through the irregular growth of the lamellae.

The local temperature fluctuations in the East China Sea, which the researchers determined with the help of the glass sponge, were not previously known. The glass sponge thus allows insights into previously unknown climate change. In order to obtain more precise information about the deep sea´s past climate, the researchers want to investigate the sponge needle and other glass sponges for silicon isotopes. They thus help to give climate researchers a more accurate data base for modeling of historical and current climate change.

Original publication:
Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals
Klaus Peter Jochum, Xiaohong Wang, Torsten W. Vennemann, Bärbel Sinha and Werner E. G. Müller
Chemical Geology 300-301, Pages 143–151 (2012)

Contact:
Dr. Klaus Peter Jochum
Max Planck Institute for Chemistry
Phone: 06131-305 6701
E-mail: k.jochum@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Earth Sciences:

nachricht More than 100 years of flooding and erosion in 1 event
28.03.2017 | Geological Society of America

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>