Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whether glaciers float may affect sea-level rise

15.07.2010
Glaciers that detach from the seafloor and begin floating create larger icebergs than glaciers that stay on the sea floor, researchers have found.

Floating glaciers also produce icebergs more erratically. These new observations may help researchers better understand and predict iceberg production from glaciers and ice sheets, improving estimates of sea-level rise due to climate change.

“If we want to have accurate predictions of sea-level rise, we need to understand how to model iceberg calving,” says Fabian Walter, a glaciologist at the Scripps Institution of Oceanography, in La Jolla, Calif. Walter is lead author of the study, which has been accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union (AGU). “Calving” is the term for icebergs breaking off from glaciers.

This study presents the first detailed observation of a glacier undergoing a transition from grounded (resting on the ocean floor) to floating, as is currently happening to a section of Columbia Glacier, one of Alaska’s many tidewater glaciers. Tidewater glaciers flow directly into the ocean, ending at a cliff in the sea, where icebergs are formed. Prior to this study, Alaskan tidewater glaciers were believed to be exclusively grounded and unable to float without disintegrating.

Icebergs are a leading source of water for the global ocean basin. Despite this, iceberg calving is one of the least understood processes involved in ice mass loss and the corresponding sea-level rise. This study is part of a larger effort to understand the formation of icebergs from glaciers and to include that process in large-scale glacier models.

“We’re seeing more tidewater glaciers retreat,” says Walter. “As they retreat, they thin, and that increases the likelihood that they’ll come afloat.”

The research team conducted their study on Columbia Glacier by installing a seismometer−a sensor that measures seismic waves that are produced by shifts in geologic formations, including earthquakes, landslides, and the calving of icebergs. The scientists studied the seismometer readings from 2004-2005 and 2008-2009, which allowed them to compare size and frequency of icebergs calved by a glacier before and after it became floating.

Calving occurs when fractures in the ice join up and cause a piece of ice to completely separate from the main glacier to form an iceberg. Unlike the floating glaciers, grounded glaciers calve icebergs nearly continuously, which means they generally form smaller icebergs.

The speed at which the Columbia Glacier is receding may also have contributed to a section of its ice coming afloat, says glaciologist Shad O’Neel of the U.S. Geological Survey (USGS), in Anchorage, Alaska, who coauthored the paper. Columbia is one of the fastest-receding glaciers in the world, having retreated 4 kilometers (2.49 miles) since 2004, and nearly 20 km (12.43 mi) since 1980.

This research was funded by a grant from the National Science Foundation.

Scripps Institution of Oceanography is a graduate school of the University of California at San Diego.

Notes for Journalists
As of the date of this press release, the paper by Walter et al. is still “in press” (i.e. not yet published). Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press at http://www.agu.org/journals/pip/gl/2010GL043201-pip.pdf.
Or, you may order a copy of the paper by emailing your request to Kathleen O’Neil at koneil@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska
Authors:
Fabian Walter, Helen Amanda Fricker: Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, California, USA;

Shad O’Neel: United States Geological Survey, Alaska Science Center, Anchorage, Alaska, USA;

Daniel McNamara: United States Geological Survey, Golden, Colorado, USA;

Tad Pfeffer: Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA USA;

Jeremy Bassis: Geological Sciences, University of Michigan, Ann Arbor, Michigan, USA.

Contact information for the authors:
Fabian Walter, UCSD – Dr. Walter is in the field in Switzerland, but can be reached by cell phone: +41 79 657 8087 Shad O’Neel, USGS: 907-786-7088, soneel@usgs.gov

Kathleen O’Neil | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>