Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glaciers: A window into human impact on the global carbon cycle

20.02.2012
Fossil fuel signature found in Alaskan ice

New clues as to how the Earth's remote ecosystems have been influenced by the industrial revolution are locked, frozen in the ice of glaciers. That is the finding of a group of scientists, including Robert Spencer of the Woods Hole Research Center. The research will be published in the March 2012 issue of Nature Geoscience.

Globally, glacier ice loss is accelerating, driven in part by the deposition of carbon in the form of soot or "black carbon," which darkens glacier surfaces and increases their absorption of light and heat. The burning of biomass – trees, leaves and other vegetation around the globe, often in fires associated with deforestation – and fossil fuel combustion, are the major sources of black carbon.

Spencer and his fellow scientists have conducted much of their research at the Mendenhall Glacier near Juneau, Alaska. Mendenhall and other glaciers that end their journey in the Gulf of Alaska receive a high rate of precipitation, which exacerbates the deposition of soot, but also makes for a good research site.

"We are finding this human derived signature in a corner of the U.S. that is traditionally viewed as being exceptionally pristine," Spencer notes. "The burning of biomass and fossil fuels has an impact we can witness in these glacier systems although they are distant from industrial centers, and it highlights that the surface biogeochemical cycles of today are universally post-industrial in a way we do not fully appreciate."

The key to the process is carbon-containing dissolved organic matter (DOM) in the glacial ice. Glaciers provide a great deal of carbon to downstream ecosystems. Many scientists believe the source of this carbon is the ancient forests and peatlands overrun by the glaciers. However, thanks to new evidence from radiocarbon dating and ultra-high resolution mass spectrometry, Spencer and his colleagues believe that the carbon comes mainly from the burning of fossil fuels and contemporary biomass. Once the organic matter that contains black carbon is deposited on the glacier surface by snow and rain, the resultant DOM moves with the glacier and is eventually delivered downstream in meltwaters where it provides food for microorganisms at the base of the aquatic food web.

"In frigid glacier environments any input stands out, making glaciers ideal sentinel ecosystems for the detection and study of anthropogenic perturbation," said Spencer referring to the reason why glaciers record the impact of human emissions. "However, the deposition of this organic material happens everywhere and in vibrant ecosystems such as those found in temperate or tropical regions, once this organic material makes landfall it is quickly consumed in the general milieu of life." The Mendenhall glacier research site therefore allows a unique perspective for studies such as this one.

Glaciers and ice sheets together represent the second largest reservoir of water on the planet, and glacier ecosystems cover ten percent of the Earth, yet the carbon dynamics underpinning those ecosystems remain poorly understood. "Improving our understanding of glacier biogeochemistry is of great urgency, as glacier environments are among the most sensitive to climate change and the effects of industrial pollution," emphasizes Spencer.

The researchers' findings also reveal how the ocean may have changed over past centuries. The microbes that form the very bottom of the food web are particularly sensitive to changes in the quantity and quality of the carbon entering the marine system. Since the study found that the organic matter in glacier outflows stems largely from human activities, it means that the supply of glacier carbon to the coastal waters of the Gulf of Alaska is a modern, post-industrial phenomenon. "When we look at the marine food webs today, we may be seeing a picture that is significantly different from what existed before the late-18th century," said Aron Stubbins a collaborator from the Skidaway Institute of Oceanography. "It is unknown how this manmade carbon has influenced the coastal food webs of Alaska and the fisheries they support."

A warming climate will increase the outflow of the glaciers and the accompanying input of dissolved organic material into the coastal ocean. This will be most keenly felt in glacially dominated coastal regions, such as those off of the Gulf of Alaska, Greenland and Patagonia. These are the areas that are experiencing the highest levels of glacier ice loss.

Spencer's collaborators on the project included Eran Hood and Andrew Vermilyea from the University of Alaska Southeast; Peter Raymond and David Butman from Yale University; George Aiken, Robert Striegl and Paul Schuster from the U.S. Geological Survey; Rachel Sleighter, Hussain Abdulla and Patrick Hatcher from Old Dominion University; Peter Hernes from the University of California-Davis; Durelle Scott from Virginia Polytechnic Institute and State University; and Aron Stubbins from Skidaway Institute of Oceanography.

Ian Vorster | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>