Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glaciations may have larger influence on biodiversity than current climate

08.06.2011
An investigation by the Spanish Scientifc Council (Consejo Superior de Investigaciones Científicas, CSIC) reveals that the large impacts occurred during the last ice age maintain their effects on the current distribution of dung beetles of the scarab family (Scarabaeidae). The presence of these beetles in Europe seems to be more influenced by the climate of that glaciation than by the present one.

The study, published yesterday in the journal Ecology Letters, analyzed the species richness and the structure of their communities throughout the different regions of the European territory from the Ural Mountains to the Iberian Peninsula. The selection of this family of insects was motivated by their high dispersal ability and because their food sources (mainly cattle and sheep dung) are present throughout the continent.

Scarabs are insects of tropical origin that cannot survive below 0 ° C mean annual temperature, "so it could be expected that their presence gradually decreases as temperatures drop down northwards " says the researcher from the National Museum of Natural Sciences, CSIC, Joaquín Hortal. However, the analysis of the relationship between the magnitude of climate change since the last glaciation and the distribution of scarabs evidences that these insects are not evenly distributed according to this gradient, but rather show two different patterns, one in the north and one in the south. Horton said: "The border defining the two areas is almost similar to the limit of 0 °C of mean annual temperature at the time of the last ice age."

Although scarab species richness is actually lower in the north that in the south, two other characteristics can be explained under the hypothesis of the influence of the last ice age.

The first one is based on the species present throughout Europe. Data show that all scarab species living in the northern territory above the border defined by the 0 ° C limit in the last glaciations are also present in the south, and there is no species exclusive to the northernmost area. According to Hortal, "this is an effect of the difficulty of adapting to cold climate that still exists, as the north does not hold unique species adapted to the cold."

This feature is consistent with the second observation, based on the age of the species present in each area. The study results show that the species that have been able to re-colonize the north are also those that have evolved most recently." Although the adaptation to cold climates started before the last glaciation, these species belong to the newer phylogenetic branches of the Scarabaeidae," says the researcher from CSIC.

Shared influence

The current distribution of scarabs in Europe demonstrates, therefore, that certain influence of the last ice age is still maintained. According to Hortal, "it is not that the current climate does not affect biodiversity, but rather that the impact of past climate change is hiding under the influence of present conditions." The reason why such impact has not been detected so far is that both cause similar effects, i.e., less species in the North of Europe. The CSIC researcher says that: "current biodiversity patterns are therefore a mixture of past climate effects, current conditions and the evolutionary history of the species."

The results of this investigation show that the consequences of major climate changes persist over a very long term. According to Hortal, "this work should be taken into account when analyzing and forecasting the consequences of the global warming currently experienced by the Earth." The researcher concludes: "If the temperature continues to rise, some climates that never occurred during the recent history of our planet may appear, and we do not know which species, both animal and plant, will be able to adapt to them; in fact, it is possible that many of them will not be able to live in these new climates."

Hortal, J., Diniz‐Filho, J. A. F., Bini, L. M., Rodríguez, M. Á., Baselga, A., Nogués‐Bravo, D., Rangel, T. F., Hawkins, B. A. & Lobo, J. M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters. doi:10.1111/j.1461‐0248.2011.01634.x

This article is available at http://onlinelibrary.wiley.com/doi/10.1111/j.1461-0248.2011.01634.x/full

J. Hortal | EurekAlert!
Further information:
http://www.wiley.com

Further reports about: CSIC Ecology Hortal Scarabaeidae cold climate food source glaciations ice age scarab family

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>