Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glacial History Affects Shape and Growth Habit of Alpine Plants

17.10.2013
Alpine plants that survived the Ice Ages in different locations still show accrued differences in appearance and features.

These findings were made by botanists from the University of Basel using two plant species. So far, it was only known that the glacial climate changes had left a «genetic fingerprint» in the DNA of alpine plants.


Yellow Bellflower
Jürg Stöcklin


Creeping Avens with offshoots
Jürg Stöcklin

During the Ice Ages the European Alps were covered by a thick layer of ice. Climate fluctuations led to great changes in the occurrences of plants: They survived the cold periods in refugia on the periphery of the Alps which they then repopulated after the ice had drawn back.

Such processes in the history of the earth can be detected by molecular analysis as «genetic fingerprints»: refugia and colonization routes can be identified as genetic groups within the plant species. Thus, the postglacial colonization history of alpine plants is still borne in plants alive today.

Yellow Bellflower and Creeping Avens

So far, it was unknown if the Ice Ages also affected the structure and growth habit of alpine plants. Prof. Jürg Stöcklin and his colleagues from the Institute of Botany at the University of Basel were now able to proof this phenomenon in two publications. The glacial periods have left marks on the Yellow Bellflower and the Creeping Avens that are visible to the naked eye. The ancestors of these plants survived the Ice Ages in different glacial refugia which led to the fact that today they show genetic differences in their external morphology and in important functional traits.

Notably, the Yellow Bellflower’s inflorescence and timing of flowering differ between plants from the Eastern Alps and plants from the central or western parts of the Alps. Regarding the Creeping Avens, plants from the Western Alps show significantly more offshoots but have fewer flowers than those from the Eastern Alps, while the dissection of the leaves increases from West to East.

Plants are more adaptable than assumed

The Botanists from Basel further discovered that the variations within one species are partly due to natural selection. For example, the timing of flowering in the Yellow Bellflower can be explained with variability in growing season length. Plants shorten their flowering duration as adaptation to the shorter growing seasons at higher elevations.

«The findings are important for understanding the effects that future climate changes may have on plants», says Stöcklin. «The glacial periods have positively affected the intraspecific biodiversity.» Furthermore, the scientists were able to show that plants are more adaptable than has been assumed previously. Climate changes do have an effect on the distribution of species; however, alpine plants also possess considerable skills to genetically adapt to changing environmental conditions.

Original source
Scheepens JF, Frei ES, Stöcklin J (2013)
Glacial history affected phenotypic differentiation in the Alpine plant, Campanula thyrsoides

PLOS ONE doi: 10.1371/journal.pone.0073854

Eva S. Frei, J. F. Scheepens, Georg F. J. Armbruster, Jürg Stöcklin
Phenotypic differentiation in a common garden reflects the phylogeography of a widespread Alpine plant

Journal of Ecology, Volume 100, Issue 2, pages 297–308, March 2012 | doi: 10.1111/j.1365-2745.2011.01909.x

Further information
• Prof. Jürg Stöcklin, University of Basel, Institute of Botany, Tel. +41 61 267 35 01, +41 79 817 57 33, Email: juerg.stoecklin@unibas.ch

• Dr. J. F. Scheepens, currently: University of Turku, Section of Ecology, University Hill, Turku, Finland, Tel. +358 2 333 55 60, +358 46 542 39 35, Email: jofrsc@utu.fi

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch
http://www.unibas.ch/index.cfm?uuid=DDF7CB29FC9D9267594BDF07F206A705&type=search&show_long=1&&o_lang_id=2

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>