Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant super-earths made of diamond are possible

06.12.2011
A planet made of diamonds may sound lovely, but you wouldn’t want to live there.

A new study suggests that some stars in the Milky Way could harbor “carbon super-Earths” – giant terrestrial planets that contain up to 50 percent diamond.

But if they exist, those planets are likely devoid of life as we know it.

The finding comes from a laboratory experiment at Ohio State University, where researchers recreated the temperatures and pressures of Earth’s lower mantle to study how diamonds form there.

The larger goal was to understand what happens to carbon inside planets in other solar systems, and whether solar systems that are rich in carbon could produce planets that are mostly made of diamond.

Wendy Panero, associate professor in the School of Earth Sciences at Ohio State, and doctoral student Cayman Unterborn used what they learned from the experiments to construct computer models of the minerals that form in planets composed with more carbon than Earth.

The result: “It’s possible for planets that are as big as fifteen times the mass of the Earth to be half made of diamond,” Unterborn said. He presented the study Tuesday at the American Geophysical Union meeting in San Francisco.

“Our results are striking, in that they suggest carbon-rich planets can form with a core and a mantle, just as Earth did,” Panero added. “However, the cores would likely be very carbon-rich – much like steel – and the mantle would also be dominated by carbon, much in the form of diamond.”

Earth’s core is mostly iron, she explained, and the mantle mostly silica-based minerals, a result of the elements that were present in the dust cloud that formed into our solar system. Planets that form in carbon-rich solar systems would have to follow a different chemical recipe – with direct consequences for the potential for life.

Earth’s hot interior results in geothermal energy, making our planet hospitable.

Diamonds transfer heat so readily, however, that a carbon super-Earth’s interior would quickly freeze. That means no geothermal energy, no plate tectonics, and – ultimately – no magnetic field or atmosphere.

“We think a diamond planet must be a very cold, dark place,” Panero said.

She and former graduate student Jason Kabbes subjected a tiny sample of iron, carbon, and oxygen to pressures of 65 gigapascals and temperatures of 2,400 Kelvin (close to 9.5 million pounds per square inch and 3,800 degrees Fahrenheit – conditions similar to the Earth’s deep interior).

As they watched under the microscope, the oxygen bonded with the iron, creating iron oxide – a type of rust – and left behind pockets of pure carbon, which became diamond.

Based on the data from that test, the researchers made computer models of Earth’s interior, and verified what geologists have long suspected – that a diamond-rich layer likely exists in Earth’s lower mantle, just above the core.

That result wasn’t surprising. But when they modeled what would happen when these results were applied to the composition of a carbon super-Earth, they found that the planet could become very large, with iron and carbon merged to form a kind of carbon steel in the core, and vast quantities of pure carbon in the mantle in the form of diamond.

The researchers discussed the implications for planetary science.

"To date, more than five hundred planets have been discovered outside of our solar system, yet we know very little about their internal compositions,” said Unterborn, who is an astronomer by training.

“We’re looking at how volatile elements like hydrogen and carbon interact inside the Earth, because when they bond with oxygen, you get atmospheres, you get oceans – you get life,” Panero said. “The ultimate goal is to compile a suite of conditions that are necessary for an ocean to form on a planet.”

This work contrasts with the recent discovery by an unrelated team of researchers who found a so-called “diamond planet” which is actually the remnant of a dead star in a binary system.

The Ohio State research suggests that true terrestrial diamond planets can form in our galaxy. Exactly how many such planets might be out there and their possible internal composition is an open question – one that Unterborn is pursuing with Ohio State astronomer Jennifer Johnson.

This research was funded by Panero’s CAREER award from the National Science Foundation.

Contact: Wendy Panero, (614) 292-6290; Panero.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Wendy Panero | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>