Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant sequoias yield longest fire history from tree rings

19.03.2010
A 3,000-year record from 52 of the world's oldest trees shows that California's western Sierra Nevada was droughty and often fiery from 800 to 1300, according to new research.

Scientists reconstructed the 3,000-year history of fire by dating fire scars on ancient giant sequoia trees, Sequoiadendron giganteum, in the Giant Forest of Sequoia National Park. Individual giant sequoias can live more than 3,000 years.

"It's the longest tree-ring fire history in the world, and it's from this amazing place with these amazing trees." said lead author Thomas W. Swetnam of the University of Arizona in Tucson. "This is an epic collection of tree rings."

The new research extends Swetnam's previous tree-ring fire history for giant sequoias another 1,000 years into the past. In addition, he and his colleagues used tree-ring records from other species of trees to reconstruct the region's past climate.

The scientists found the years from 800 to 1300, known as the Medieval Warm Period, had the most frequent fires in the 3,000 years studied. Other research has found that the period from 800 to 1300 was warm and dry.

"What's not so well known about the Medieval Warm Period is how warm it was in the western U.S.," Swetnam said. "This is one line of evidence that it was very fiery on the western slopes of the Sierra Nevada – and there's a very strong relationship between drought and fire."

Droughts are typically both warm and dry, he added.

Knowing how giant sequoia trees responded to a 500-year warm spell in the past is important because scientists predict that climate change will probably subject the trees to such a warm, dry environment again, said Swetnam, a UA professor of dendrochronology and director of UA's Laboratory of Tree-Ring Research.

During the Medieval Warm Period extensive fires burned through parts of the Giant Forest at intervals of about 3 to 10 years, he said. Any individual tree was probably in a fire about every 10 to 15 years.

The team also compared charcoal deposits in boggy meadows within the groves to the tree-ring fire history. The chronology of charcoal deposits closely matches the tree-ring chronology of fire scars.

The health of the giant sequoia forests seems to require those frequent, low-intensity fires, Swetnam said. He added that as the climate warms, carefully reintroducing low-intensity fires at frequencies similar to those of the Medieval Warm Period may be crucial for the survival of those magnificent forests, such as those in Sequoia and Kings Canyon National Parks.

Since 1860, human activity has greatly reduced the extent of fires. He and his colleagues commend the National Park Service for its recent work reintroducing fire into the giant sequoia groves.

The team's report, "Multi-Millennial Fire History of the Giant Forest, Sequoia National Park, California, USA," was published in the electronic journal Fire Ecology in February. A complete list of authors and funding sources is at the bottom of this release.

To study tree rings, researchers generally take a pencil-sized core from a tree. The oldest rings are those closest to the center of the tree. However, ancient giant sequoias can have trunks that are 30 feet in diameter – far too big to be sampled using even the longest coring tools, which are only three feet long.

To gather samples from the Giant Forest trees, the researchers were allowed to collect cross-sections of downed logs and standing dead trees, he said. It turned out to be a gargantuan undertaking that required many people and many field seasons.

"We were sampling with the largest chain saws we could find – a chain-saw bar of seven feet," he said. "We were hauling these slabs of wood two meters on a side as far as two kilometers to the road. We were using wheeled litters – the emergency rescue equipment for people – and put a couple hundred pounds on them."

To develop a separate chronology for past fires, co-authors R. Scott Anderson and Douglas J. Hallett looked for charcoal in sediment cores taken from meadows within the sequoia groves.

"We can compare the charcoal and tree-ring fire records. It confirms that the charcoal is a good indicator of past fires," Swetnam said.

Such charcoal-based fire histories can extend much further into the past than most tree-ring-based fire histories, he said. The charcoal history of fire in the giant sequoia groves extends back more than 8,000 years.

Increasingly, researchers all over the world are using charcoal to reconstruct fire histories, Swetnam said. Many scientists are analyzing the global record of charcoal to study relationships between climate, fire and the resulting addition of carbon dioxide to the atmosphere.

Swetnam's co-authors are Christopher H. Baisan and Ramzi Touchan of the University of Arizona; Anthony C. Caprio of Sequoia and Kings Canyon National Parks in Three Rivers, Calif.; Peter M. Brown of the Rocky Mountain Tree-Ring Research and Colorado State University in Fort Collins; R. Scott Anderson of Northern Arizona University in Flagstaff; and Douglas J. Hallett of the University of Calgary in Alberta, Canada.

The National Park Service, the U.S. Geological Survey, Mountain Home Demonstration State Forest and Calaveras Big Trees State Park provided funding.

Researcher contact:
Thomas W. Swetnam, 520-621-2112, tswetnam@ltrr.arizona.edu
Related Web sites:
Thomas W. Swetnam, http://tree.ltrr.arizona.edu/~tswetnam
University of Arizona's Laboratory of Tree-Ring Research
http://www.ltrr.arizona.edu
Sequoia and Kings Canyon National Park
http://www.nps.gov/seki/index.htm

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>