Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant see-saw of monsoon rains detected

26.09.2016

When the summer rains in China are weak, they are strong in Australia, and vice versa – scientists have discovered a previously unknown see-saw relationship between these two monsoon regions. This effect does not occur from one year to another, but on decadal and centennial time scales. To detect the pattern, the team developed a novel mathematical method to analyze traces of climatic events of the past 9000 years archived in ancient dripstones from caves.

The regional monsoon has huge effects on agriculture and hence on the livelihoods of half of the world’s population, including India and Indonesia. Understanding how seasonal periods of rainfall in the Northern and Southern Hemispheres of our planet are linked is important for assessing possible long-distance effects of climate change.

“We’ve been surprised by how clearly the ups and downs of precipitation in East Asia on the one hand and Australia on the other hand are opposed, it’s really a giant see-saw,” says Deniz Eroglu from the Potsdam Institute for Climate Impact Research (PIK) and University of São Paulo, lead author of the study to be published in Nature Communications. “We needed to cut through the data clutter to detect this pattern. While our method of sophisticated statistical time series data analysis might seem quite complicated, our findings have substantial real-world consequences.”

Data from caves in China and Australia – these countries are most affected

Australia, just like China, heavily depends on the monsoon summer rains. “Both countries have experienced drier and wetter periods in the past. For instance the Northwest of Australia’s tourism and agriculture industries are vulnerable to flooding and bush fires, so any change from the current precipitation pattern will have huge impacts for the people living here,” says co-author Thomas Stemler from the University of Western Australia.

“However, this is an issue way beyond the region – in fact, the East-Asian-Indonesian-Australian summer monsoon provides a heat source that drives global circulation of airstreams during what is the winter season in the US, Russia and Europe. It will be exciting to investigate how the see-saw we found may be affecting these far-away parts of the world.”

Since there are no direct records of monsoon dynamics over past millennia, the scientists need to work with indirect data evidence. “Dripstones in ancient caves are amazing witnesses of the Earth’s past. Since they’re growing just fractions of a millimeter per year, we can see changes in the chemical composition over time from one layer to another,” says co-author Norbert Marwan from PIK who himself explored various caves, for instance in India. For the new study, the team used data from Dongge Cave in Southern China and cave KNI-51 in Northwestern Australia.

“Though it might seem challenging to climb into the caves to access the dripstones,” says Marwan, “the real challenge is to decrypt the information they carry – analyzing thousands of isotope samples and attributing them to specific climatic conditions. For this, we need sophisticated statistics.” A key partner in this process has been the Institute for Geology, Mineralogy & Geophysics at Ruhr-Universität Bochum.

Mechanics of the heavens are a driver, but human-made warming can change the dynamics

“The monsoon see-saw is likely driven by factors humans cannot influence, including the tilt of our Earth’s axis and solar activity, so that’s celestial mechanics,” says co-author Jürgen Kurths, co-chair of PIK’s research domain Transdisciplinary Concepts and Methods.

“However, disturbing circulation and precipitation patterns is something we unfortunately can do and already are doing by emitting greenhouse gases and thereby warming our planet. Understanding the natural East-Asian-Australian monsoon variability will help us to better understand certain human-caused climate risks in the future.”

Article: Deniz Eroglu, Fiona H. McRobie, Ibrahim Ozken, Thomas Stemler, Karl-Heinz Wyrwoll, Sebastian F. M. Breitenbach, Norbert Marwan, Jürgen Kurths (2016): See-saw relationship of the Holocene East Asian-Australian summer monsoon. Nature Communications [10.1038/NCOMMS12929]

Weblink to the article once it is published: http://dx.doi.org/10.1038/NCOMMS12929

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>