Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant see-saw of monsoon rains detected

26.09.2016

When the summer rains in China are weak, they are strong in Australia, and vice versa – scientists have discovered a previously unknown see-saw relationship between these two monsoon regions. This effect does not occur from one year to another, but on decadal and centennial time scales. To detect the pattern, the team developed a novel mathematical method to analyze traces of climatic events of the past 9000 years archived in ancient dripstones from caves.

The regional monsoon has huge effects on agriculture and hence on the livelihoods of half of the world’s population, including India and Indonesia. Understanding how seasonal periods of rainfall in the Northern and Southern Hemispheres of our planet are linked is important for assessing possible long-distance effects of climate change.

“We’ve been surprised by how clearly the ups and downs of precipitation in East Asia on the one hand and Australia on the other hand are opposed, it’s really a giant see-saw,” says Deniz Eroglu from the Potsdam Institute for Climate Impact Research (PIK) and University of São Paulo, lead author of the study to be published in Nature Communications. “We needed to cut through the data clutter to detect this pattern. While our method of sophisticated statistical time series data analysis might seem quite complicated, our findings have substantial real-world consequences.”

Data from caves in China and Australia – these countries are most affected

Australia, just like China, heavily depends on the monsoon summer rains. “Both countries have experienced drier and wetter periods in the past. For instance the Northwest of Australia’s tourism and agriculture industries are vulnerable to flooding and bush fires, so any change from the current precipitation pattern will have huge impacts for the people living here,” says co-author Thomas Stemler from the University of Western Australia.

“However, this is an issue way beyond the region – in fact, the East-Asian-Indonesian-Australian summer monsoon provides a heat source that drives global circulation of airstreams during what is the winter season in the US, Russia and Europe. It will be exciting to investigate how the see-saw we found may be affecting these far-away parts of the world.”

Since there are no direct records of monsoon dynamics over past millennia, the scientists need to work with indirect data evidence. “Dripstones in ancient caves are amazing witnesses of the Earth’s past. Since they’re growing just fractions of a millimeter per year, we can see changes in the chemical composition over time from one layer to another,” says co-author Norbert Marwan from PIK who himself explored various caves, for instance in India. For the new study, the team used data from Dongge Cave in Southern China and cave KNI-51 in Northwestern Australia.

“Though it might seem challenging to climb into the caves to access the dripstones,” says Marwan, “the real challenge is to decrypt the information they carry – analyzing thousands of isotope samples and attributing them to specific climatic conditions. For this, we need sophisticated statistics.” A key partner in this process has been the Institute for Geology, Mineralogy & Geophysics at Ruhr-Universität Bochum.

Mechanics of the heavens are a driver, but human-made warming can change the dynamics

“The monsoon see-saw is likely driven by factors humans cannot influence, including the tilt of our Earth’s axis and solar activity, so that’s celestial mechanics,” says co-author Jürgen Kurths, co-chair of PIK’s research domain Transdisciplinary Concepts and Methods.

“However, disturbing circulation and precipitation patterns is something we unfortunately can do and already are doing by emitting greenhouse gases and thereby warming our planet. Understanding the natural East-Asian-Australian monsoon variability will help us to better understand certain human-caused climate risks in the future.”

Article: Deniz Eroglu, Fiona H. McRobie, Ibrahim Ozken, Thomas Stemler, Karl-Heinz Wyrwoll, Sebastian F. M. Breitenbach, Norbert Marwan, Jürgen Kurths (2016): See-saw relationship of the Holocene East Asian-Australian summer monsoon. Nature Communications [10.1038/NCOMMS12929]

Weblink to the article once it is published: http://dx.doi.org/10.1038/NCOMMS12929

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

www.pik-potsdam.de

Mareike Schodder | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>