Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant Sarcophagus Leads Penn Museum Team in Egypt To the Tomb of a Previously Unknown Pharaoh

Discovery Provides Evidence of a Forgotten Egyptian Dynasty from 3,600 Years Ago

Archaeologists working at the southern Egyptian site of Abydos have discovered the tomb of a previously unknown pharaoh: Woseribre Senebkay—and the first material proof of a forgotten Abydos Dynasty, ca. 1650–1600 BC. Working in cooperation with Egypt's Supreme Council of Antiquities, a team from the Penn Museum, University of Pennsylvania, discovered king Senebkay's tomb close to a larger royal tomb, recently identified as belonging to a king Sobekhotep (probably Sobekhotep I, ca. 1780 BC) of the 13th Dynasty.

Team members work to excavate the burial chamber of the pharaoh Woseribre Senebkay, with sheets covering a painted wall decoration (Photo: Josef Wegner, Penn Museum)

The skeleton of the previously unknown pharaoh Woseribre Senebkay lays on a table. The king's body was originally mummified, but robbers ripped the body apart. Surrounding the skeleton (from left to right) are Matt Olson, Graduate Student, NELC Department, University of Pennsylvania; Alexander Wegner; and Paul Verhelst, Graduate Student, NELC Department, University of Pennsylvania (Photo: Jennifer Wegner, Penn Museum)

The discovery of pharaoh Senebkay's tomb is the culmination of work that began during the summer of 2013 when the Penn Museum team, led by Dr. Josef Wegner, Egyptian Section Associate Curator of the Penn Museum, discovered a huge 60-ton royal sarcophagus chamber at South Abydos. The sarcophagus chamber, of red quartzite quarried and transported to Abydos from Gebel Ahmar (near modern Cairo), could be dated to the late Middle Kingdom, but its owner remained unidentified. Mysteriously, the sarcophagus had been extracted from its original tomb and reused in a later tomb—but the original royal owner remained unknown when the summer season ended.

In the last few weeks of excavations, fascinating details of a series of kings' tombs and a lost dynasty at Abydos have emerged. Archaeologists now know that the giant quartzite sarcophagus chamber derives from a royal tomb built originally for a pharaoh Sobekhotep—probably Sobekhotep I, the first king of Egypt's 13th Dynasty. Fragments of that king's funerary stela were found just recently in front of his huge, badly robbed tomb. A group of later pharaohs (reigning about a century and a half later during Egypt's Second Intermediate Period) were reusing elements from Sobekhotep's tomb for building and equipping their own tombs. One of these kings (whose name is still unknown) had extracted and reused the quartzite sarcophagus chamber. Another king's tomb found just last week is that of the previously unknown pharaoh: Woseribre-Senebkay.

A Lost Pharaoh and a Forgotten Dynasty

The newly discovered tomb of pharaoh Senebkay dates to ca. 1650 BC during Egypt's Second Intermediate Period. The identification was made by Dr. Wegner and Kevin Cahail, Ph.D. student, Department of Near Eastern Languages and Civilizations, University of Pennsylvania. The tomb of Senebkay consists of four chambers with a decorated limestone burial chamber. The burial chamber is painted with images of the goddesses Nut, Nephthys, Selket, and Isis flanking the king's canopic shrine. Other texts name the sons of Horus and record the king's titulary and identify him as the "king of Upper and Lower Egypt, Woseribre, the son of Re, Senebkay."

The skeleton of the previously unknown pharaoh Woseribre Senebkay lays on a table. The king’s body was originally mummified, but robbers ripped the body apart. Photo: Jennifer Wegner, Penn Museum.Senebkay's tomb was badly plundered by ancient tomb robbers who had ripped apart the king's mummy as well as stripped the pharaoh's tomb equipment of its gilded surfaces. Nevertheless, the Penn Museum archaeologists recovered the remains of king Senebkay amidst debris of his fragmentary coffin, funerary mask, and canopic chest. Preliminary work on the king's skeleton of Senebkay by Penn graduate students Paul Verhelst and Matthew Olson (of the Department of Near Eastern Languages and Civilizations) indicates he was a man of moderate height, ca. 1.75 m (5'10), and died in his mid to late 40s.

The discovery provides significant new evidence on the political and social history of Egypt's Second Intermediate Period. The existence of an independent "Abydos Dynasty," contemporary with the 15th (Hyksos) and 16th (Theban) Dynasties, was first hypothesized by Egyptologist K. Ryholt in 1997. The discovery of pharaoh Senebkay now proves the existence of this Abydos dynasty and identifies the location of their royal necropolis at South Abydos in an area anciently called Anubis-Mountain. The kings of the Abydos Dynasty placed their burial ground adjacent to the tombs of earlier Middle Kingdom pharaohs including Senwosret III (Dynasty 12, ca. 1880–1840 BC), and Sobekhotep I (ca. 1780 BC). There is evidence for about 16 royal tombs spanning the period ca. 1650–1600 BC. Senebkay appears to be one of the earliest kings of the "Abydos Dynasty." His name may have appeared in a broken section of the famous Turin King List (a papyrus document dating to the reign of Ramses II, ca. 1200 BC) where two kings with the throne name "" are recorded at the head of a group of more than a dozen kings, most of whose names are entirely lost.

The tomb of pharaoh Senebkay is modest in scale. An important discovery was the badly decayed remains of Senebkay's canopic chest. This chest was made of cedar wood that had been reused from the nearby tomb of Sobekhotep I and still bore the name of that earlier king, covered over by gilding. Such reuse of objects from the nearby Sobekhotep tomb by Senebkay, like the reused sarcophagus chamber found during the summer, provides evidence that suggests the limited resources and isolated economic situation of the Abydos Kingdom which lay in the southern part of Middle Egypt between the larger kingdoms of Thebes (Dynasties 16–17) and the Hyksos (Dynasty 15) in northern Egypt. Unlike these numbered dynasties, the pharaohs of the Abydos Dynasty were forgotten to history and their royal necropolis unknown until this discovery of Senebkay's tomb.

"It's exciting to find not just the tomb of one previously unknown pharaoh, but the necropolis of an entire forgotten dynasty," noted Dr. Wegner. "Continued work in the royal tombs of the Abydos Dynasty promises to shed new light on the political history and society of an important but poorly understood era of Ancient Egypt."

Abydos and the Penn Museum

Penn Museum scholars have been excavating at the site of Abydos since 1967, as part of the Pennsylvania-Yale-Institute of Fine Arts/NYU Expedition to Abydos. Abydos is located on the western side of the Nile in Upper Egypt and was a religious center associated with the veneration of the funerary god Osiris. Dr. Josef Wegner has been excavating at the site of Abydos since 1994. Excavations in the area of South Abydos have revealed a thriving royal cult center that developed around the subterranean tomb of pharaoh Senwosret III located at the area called Anubis-Mountain.

The Penn Museum (the University of Pennsylvania Museum of Archaeology and Anthropology) in Philadelphia is dedicated to the study and understanding of human history and diversity. Founded in 1887, the Museum has sent more than 300 archaeological and anthropological expeditions to all the inhabited continents of the world. With an active exhibition schedule and educational programming for children and adults, the Museum offers the public an opportunity to share in the ongoing discovery of humankind's collective heritage.

Pam Kosty | EurekAlert!
Further information:

Further reports about: Abydos Anubis-Mountain Egypt Egyptian Sarcophagus Senebkay dynasty intermediate pharaoh

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>