Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant ice avalanches on Iapetus provide clue to extreme slippage elsewhere in the solar system

"We see landslides everywhere in the solar system," says Kelsi Singer, graduate student in earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, "but Saturn's icy moon Iapetus has more giant landslides than any body other than Mars."

The reason, says William McKinnon, PhD, professor of earth and planetary sciences, is Iapetus' spectacular topography. "Not only is the moon out-of-round, but the giant impact basins are very deep, and there's this great mountain ridge that's 20 kilometers (12 miles) high, far higher than Mount Everest.

Low coefficients of friction in moving masses of rubble also might explain anomalous landslides on Earth, called sturtzstroms. One famous example is the prehistoric Blackhawk landslide; Rock falling from the San Bernardino mountains in California traveled an astonishing five miles into Lucerne Valley. Credit: Kerry Sieh/USGS/public domain

"So there's a lot of topography and it's just sitting around, and then, from time to time, it gives way," McKinnon says.

Falling from such heights, the ice reaches high speeds — and then something odd happens.

Somehow, its coefficient of friction drops, and it begins to flow rather than tumble, traveling many miles before it dissipates the energy of the fall and finally comes to rest.

In the July 29 issue of Nature Geoscience, Singer, McKinnon and colleagues Paul M. Schenk of the Lunar and Planetary Institute and Jeffrey M. Moore of the NASA Ames Research Center, describe these giant ice avalanches.

They challenge experimental physicists to measure friction when ice is sliding, and suggest a mechanism that might make ice or rocks slippery, not just during avalanches or landslides, but also during earthquakes or icy moonquakes.

Too many hypotheses

The ice avalanches on Iapetus aren't just large; they're larger than they should be given the forces scientists think set them in motion and bring them to a halt.

The counterpart to the Iapetian ice avalanche on Earth is a long-runout rock landslide, or sturzstrom (German for "fallstream"). Most landslides travel a horizontal distance that is less than twice the distance the rocks have fallen.

On rare occasions, however, a landslide will travel 20 or 30 times farther than it fell, traveling for long distances horizontally or even surging uphill. These extraordinarily mobile landslides, which seem to spill like a fluid rather than tumble like rocks, have long mystified scientists.

The mechanics of a normal runout are straightforward. The debris travels outward until friction within the debris mass and with the ground dissipates the energy the rock gained by falling, and the rock mass comes to rest.

But to explain the exceptionally long runouts, some other mechanism must be invoked as well. Something must be acting to reduce friction during the runout, Singer says.

The trouble is, there is no agreement about what this something might be. Proposals have included a cushion of air, lubrication by water or by rock flour or a thin melted layer. "There are more mechanisms proposed for fiction reduction than I can put on a PowerPoint slide," McKinnon jokes.

"The landslides on Iapetus are a planet-scale experiment that we cannot do in a laboratory or observe on Earth," Singer says. "They give us examples of giant landslides in ice, instead of rock, with a different gravity, and no atmosphere. So any theory of long runout landslides on Earth must also work for avalanches on Iapetus."

An experiment by accident

McKinnon, whose research focuses on the icy satellites of the outer solar system planets, has been studying Iapetus since the Cassini spacecraft flew by it in December 2004 and September 2007 and streamed images of the ice moon to Earth.

Almost everything about Iapetus is odd. It should be spherical, but it's fatter at the equator than at the poles, probably because it froze in place when it was spinning faster than it is now. And it has an extremely tall, razor-striaght mountain range of mysterious origin that wraps most of the way around its equator. Because of its stoutness and giant ridge, the moon looks like an oversized walnut.

If the Iapetian surface locked in place before it could spin down to a sphere, there must be stresses in its surface, McKinnon reasoned. So he suggested Singer check the Cassini images for stress fractures in the ice.

She looked carefully at every Cassini image and didn't find much evidence of fracturing. Instead, she kept finding giant avalanches.

Singer eventually identified 30 massive ice avalanches in the Cassini images — 17 that had plunged down crater walls and another 13 that had swept down the slides of the equatorial mountain range.

Careful measurements of the heights from which the ice had fallen and the avalanche runout did not find trends consistent with some of the most popular theories for the extraordinary mobility of long-runout landslides.

The scientists say data can't exclude them, however. "We don't have the same range of measurements for the Iapetian avalanches that is available for landslides on Earth and Mars," Singer explains.

But, it is nonetheless clear that the coefficient of friction of the avalanches (as measured by a proxy, the ratio between the drop height and the runout) is not consistent with the coefficients of friction of very cold ice measured in the laboratory.

Coefficients of friction can range from near zero to greater than one. Laboratory measurements of the coefficients for really cold ice lie between 0.55 and 0.7.

"Really cold ice debris is as frictional as beach sand," McKinnon says.

The coefficients for the Iapetus avalanches, however, scatter between 0.1 and 0.3. Something is off here.

A testable hypothesis

In a typical laboratory experiment to measure the frictional coefficient of ice, cylinders of ice are rotated against one another and their resistance to rotation is measured. If ice is moving slowly, it is very frictional.

But if it were moving faster, the friction might be lower.

Would rapid motion make even super-cold ice slippery? That's a testable hypothesis, the scientists point out, and one they hope experimental physicists soon will take for a spin.

Friction isn't trivial

If ice becomes less frictional when traveling at speed, what about rock? "If you had some kind of quick movement, whether it was a landslide or the slip along a fault, the same kind of thing could happen," Singer says.

Geologists now realize that major faults are weaker during earthquakes than laboratory measurements of rocks' coefficients of friction suggest they should be, she says.

But in this case, higher velocity experiments already have been done. At slow slip rates, the friction coefficient of rocks ranges from 0.6 to 0.85. But when the rocks are sliding past one another fast enough, the friction coefficient is near 0.2. That's in the same range as the Iapetian ice avalanche's coefficients.

Nobody is sure what lubricates the faults when they are jolted into motion by an earthquake, but one of the simplest hypotheses is something called flash heating, Singer says. The idea is that as the rocks slide past one another, asperities (tiny contact points) on their surfaces are heated by friction.

Above a critical speed, the heat would not have time to escape the contact points, which would be flash-heated to temperatures high enough to weaken or even melt the rock. This weakening might explain high slip rates and large sliding displacements characteristic of earthquakes.

The case for flash heating is buttressed by the discovery of rocks that seem to have undergone frictional melting, generically called frictionites, or pseudotachylites, along faults and associated with some rock slides, Singer says.

"You might think friction is trivial," McKinnon says, "but it's not. And that goes for friction between ices and friction between rocks. It's really important not just for landslides, but also for earthquakes and even for the stability of the land. And that's why these observations on an ice moon are interesting and thought-provoking."

Diana Lutz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>



Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

More VideoLinks >>>